com.google.gwt.emul.java.util.stream.Stream Maven / Gradle / Ivy
/*
* Copyright 2016 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package java.util.stream;
import static javaemul.internal.InternalPreconditions.checkNotNull;
import static javaemul.internal.InternalPreconditions.checkState;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Optional;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.Spliterators.AbstractDoubleSpliterator;
import java.util.Spliterators.AbstractIntSpliterator;
import java.util.Spliterators.AbstractLongSpliterator;
import java.util.Spliterators.AbstractSpliterator;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BinaryOperator;
import java.util.function.Consumer;
import java.util.function.DoubleConsumer;
import java.util.function.Function;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.LongConsumer;
import java.util.function.Predicate;
import java.util.function.Supplier;
import java.util.function.ToDoubleFunction;
import java.util.function.ToIntFunction;
import java.util.function.ToLongFunction;
import java.util.function.UnaryOperator;
/**
* See
* the official Java API doc for details.
*
* @param the type of data being streamed
*/
public interface Stream extends BaseStream> {
/**
* Value holder for various stream operations.
*/
static final class ValueConsumer implements Consumer {
T value;
@Override
public void accept(T value) {
this.value = value;
}
}
static Stream.Builder builder() {
return new Builder() {
private Object[] items = new Object[0];
@Override
public void accept(T t) {
checkState(items != null, "Builder already built");
items[items.length] = t;
}
@Override
@SuppressWarnings("unchecked")
public Stream build() {
checkState(items != null, "Builder already built");
Stream stream = (Stream) Arrays.stream(items);
items = null;
return stream;
}
};
}
static Stream concat(Stream extends T> a, Stream extends T> b) {
// This is nearly the same as flatMap, but inlined, wrapped around a single spliterator of
// these two objects, and without close() called as the stream progresses. Instead, close is
// invoked as part of the resulting stream's own onClose, so that either can fail without
// affecting the other, and correctly collecting suppressed exceptions.
// TODO replace this flatMap-ish spliterator with one that directly combines the two root
// streams
Spliterator extends Stream extends T>> spliteratorOfStreams =
Arrays.asList(a, b).spliterator();
AbstractSpliterator spliterator =
new Spliterators.AbstractSpliterator(Long.MAX_VALUE, 0) {
Spliterator extends T> next;
@Override
public boolean tryAdvance(Consumer super T> action) {
// look for a new spliterator
while (advanceToNextSpliterator()) {
// if we have one, try to read and use it
if (next.tryAdvance(action)) {
return true;
} else {
// failed, null it out so we can find another
next = null;
}
}
return false;
}
private boolean advanceToNextSpliterator() {
while (next == null) {
if (!spliteratorOfStreams.tryAdvance(
n -> {
if (n != null) {
next = n.spliterator();
}
})) {
return false;
}
}
return true;
}
};
Stream result = new StreamSource(null, spliterator);
result.onClose(a::close);
result.onClose(b::close);
return result;
}
static Stream empty() {
return new EmptyStreamSource(null);
}
static Stream generate(Supplier s) {
AbstractSpliterator spliterator =
new Spliterators.AbstractSpliterator(
Long.MAX_VALUE, Spliterator.IMMUTABLE | Spliterator.ORDERED) {
@Override
public boolean tryAdvance(Consumer super T> action) {
action.accept(s.get());
return true;
}
};
return StreamSupport.stream(spliterator, false);
}
static Stream iterate(T seed, UnaryOperator f) {
AbstractSpliterator spliterator =
new Spliterators.AbstractSpliterator(
Long.MAX_VALUE, Spliterator.IMMUTABLE | Spliterator.ORDERED) {
private T next = seed;
@Override
public boolean tryAdvance(Consumer super T> action) {
action.accept(next);
next = f.apply(next);
return true;
}
};
return StreamSupport.stream(spliterator, false);
}
static Stream of(T t) {
// TODO consider a splittable that returns only a single value, either for use here or in the
// singleton collection types
return Collections.singleton(t).stream();
}
static Stream of(T... values) {
return Arrays.stream(values);
}
/**
* See
* the official Java API doc for details.
*/
public interface Builder extends Consumer {
@Override
void accept(T t);
default Stream.Builder add(T t) {
accept(t);
return this;
}
Stream build();
}
boolean allMatch(Predicate super T> predicate);
boolean anyMatch(Predicate super T> predicate);
R collect(Collector super T, A, R> collector);
R collect(
Supplier supplier, BiConsumer accumulator, BiConsumer combiner);
long count();
Stream distinct();
Stream filter(Predicate super T> predicate);
Optional findAny();
Optional findFirst();
Stream flatMap(Function super T, ? extends Stream extends R>> mapper);
DoubleStream flatMapToDouble(Function super T, ? extends DoubleStream> mapper);
IntStream flatMapToInt(Function super T, ? extends IntStream> mapper);
LongStream flatMapToLong(Function super T, ? extends LongStream> mapper);
void forEach(Consumer super T> action);
void forEachOrdered(Consumer super T> action);
Stream limit(long maxSize);
Stream map(Function super T, ? extends R> mapper);
DoubleStream mapToDouble(ToDoubleFunction super T> mapper);
IntStream mapToInt(ToIntFunction super T> mapper);
LongStream mapToLong(ToLongFunction super T> mapper);
Optional max(Comparator super T> comparator);
Optional min(Comparator super T> comparator);
boolean noneMatch(Predicate super T> predicate);
Stream peek(Consumer super T> action);
Optional reduce(BinaryOperator accumulator);
T reduce(T identity, BinaryOperator accumulator);
U reduce(U identity, BiFunction accumulator, BinaryOperator combiner);
Stream skip(long n);
Stream sorted();
Stream sorted(Comparator super T> comparator);
Object[] toArray();
A[] toArray(IntFunction generator);
/**
* Represents an empty stream, doing nothing for all methods.
*/
static class EmptyStreamSource extends TerminatableStream>
implements Stream {
public EmptyStreamSource(TerminatableStream> previous) {
super(previous);
}
@Override
public Stream filter(Predicate super T> predicate) {
throwIfTerminated();
return this;
}
@Override
public Stream map(Function super T, ? extends R> mapper) {
throwIfTerminated();
return (Stream) this;
}
@Override
public IntStream mapToInt(ToIntFunction super T> mapper) {
throwIfTerminated();
return new IntStream.EmptyIntStreamSource(this);
}
@Override
public LongStream mapToLong(ToLongFunction super T> mapper) {
throwIfTerminated();
return new LongStream.EmptyLongStreamSource(this);
}
@Override
public DoubleStream mapToDouble(ToDoubleFunction super T> mapper) {
throwIfTerminated();
return new DoubleStream.EmptyDoubleStreamSource(this);
}
@Override
public Stream flatMap(Function super T, ? extends Stream extends R>> mapper) {
throwIfTerminated();
return (Stream) this;
}
@Override
public IntStream flatMapToInt(Function super T, ? extends IntStream> mapper) {
throwIfTerminated();
return new IntStream.EmptyIntStreamSource(this);
}
@Override
public LongStream flatMapToLong(Function super T, ? extends LongStream> mapper) {
throwIfTerminated();
return new LongStream.EmptyLongStreamSource(this);
}
@Override
public DoubleStream flatMapToDouble(Function super T, ? extends DoubleStream> mapper) {
throwIfTerminated();
return new DoubleStream.EmptyDoubleStreamSource(this);
}
@Override
public Stream distinct() {
throwIfTerminated();
return this;
}
@Override
public Stream sorted() {
throwIfTerminated();
return this;
}
@Override
public Stream sorted(Comparator super T> comparator) {
throwIfTerminated();
return this;
}
@Override
public Stream peek(Consumer super T> action) {
throwIfTerminated();
return this;
}
@Override
public Stream limit(long maxSize) {
throwIfTerminated();
checkState(maxSize >= 0, "maxSize may not be negative");
return this;
}
@Override
public Stream skip(long n) {
throwIfTerminated();
checkState(n >= 0, "n may not be negative");
return this;
}
@Override
public void forEach(Consumer super T> action) {
terminate();
// nothing to do
}
@Override
public void forEachOrdered(Consumer super T> action) {
terminate();
// nothing to do
}
@Override
public Object[] toArray() {
terminate();
return new Object[0];
}
@Override
public A[] toArray(IntFunction generator) {
terminate();
return generator.apply(0);
}
@Override
public T reduce(T identity, BinaryOperator accumulator) {
terminate();
return identity;
}
@Override
public Optional reduce(BinaryOperator accumulator) {
terminate();
return Optional.empty();
}
@Override
public U reduce(
U identity, BiFunction accumulator, BinaryOperator combiner) {
terminate();
return identity;
}
@Override
public R collect(
Supplier supplier, BiConsumer accumulator, BiConsumer combiner) {
terminate();
return supplier.get();
}
@Override
public R collect(Collector super T, A, R> collector) {
terminate();
return collector.finisher().apply(collector.supplier().get());
}
@Override
public Optional min(Comparator super T> comparator) {
terminate();
return Optional.empty();
}
@Override
public Optional max(Comparator super T> comparator) {
terminate();
return Optional.empty();
}
@Override
public long count() {
terminate();
return 0;
}
@Override
public boolean anyMatch(Predicate super T> predicate) {
terminate();
return false;
}
@Override
public boolean allMatch(Predicate super T> predicate) {
terminate();
return true;
}
@Override
public boolean noneMatch(Predicate super T> predicate) {
terminate();
return true;
}
@Override
public Optional findFirst() {
terminate();
return Optional.empty();
}
@Override
public Optional findAny() {
terminate();
return Optional.empty();
}
@Override
public Iterator iterator() {
terminate();
return Collections.emptyIterator();
}
@Override
public Spliterator spliterator() {
terminate();
return Spliterators.emptySpliterator();
}
@Override
public boolean isParallel() {
throwIfTerminated();
return false;
}
@Override
public Stream sequential() {
throwIfTerminated();
return this;
}
@Override
public Stream parallel() {
throwIfTerminated();
return this;
}
@Override
public Stream unordered() {
throwIfTerminated();
return this;
}
}
/**
* Object to Object map spliterator.
* @param the input type
* @param the output type
*/
static final class MapToObjSpliterator extends Spliterators.AbstractSpliterator {
private final Function super U, ? extends T> map;
private final Spliterator original;
public MapToObjSpliterator(Function super U, ? extends T> map, Spliterator original) {
super(
original.estimateSize(),
original.characteristics() & ~(Spliterator.SORTED | Spliterator.DISTINCT));
checkNotNull(map);
this.map = map;
this.original = original;
}
@Override
public boolean tryAdvance(final Consumer super T> action) {
return original.tryAdvance(u -> action.accept(map.apply(u)));
}
}
/**
* Object to Int map spliterator.
* @param the input type
*/
static final class MapToIntSpliterator extends Spliterators.AbstractIntSpliterator {
private final ToIntFunction super T> map;
private final Spliterator original;
public MapToIntSpliterator(ToIntFunction super T> map, Spliterator original) {
super(
original.estimateSize(),
original.characteristics() & ~(Spliterator.SORTED | Spliterator.DISTINCT));
checkNotNull(map);
this.map = map;
this.original = original;
}
@Override
public boolean tryAdvance(final IntConsumer action) {
return original.tryAdvance(u -> action.accept(map.applyAsInt(u)));
}
}
/**
* Object to Long map spliterator.
* @param the input type
*/
static final class MapToLongSpliterator extends Spliterators.AbstractLongSpliterator {
private final ToLongFunction super T> map;
private final Spliterator original;
public MapToLongSpliterator(ToLongFunction super T> map, Spliterator original) {
super(
original.estimateSize(),
original.characteristics() & ~(Spliterator.SORTED | Spliterator.DISTINCT));
checkNotNull(map);
this.map = map;
this.original = original;
}
@Override
public boolean tryAdvance(final LongConsumer action) {
return original.tryAdvance(u -> action.accept(map.applyAsLong(u)));
}
}
/**
* Object to Double map spliterator.
* @param the input type
*/
static final class MapToDoubleSpliterator extends Spliterators.AbstractDoubleSpliterator {
private final ToDoubleFunction super T> map;
private final Spliterator original;
public MapToDoubleSpliterator(ToDoubleFunction super T> map, Spliterator original) {
super(
original.estimateSize(),
original.characteristics() & ~(Spliterator.SORTED | Spliterator.DISTINCT));
checkNotNull(map);
this.map = map;
this.original = original;
}
@Override
public boolean tryAdvance(final DoubleConsumer action) {
return original.tryAdvance(u -> action.accept(map.applyAsDouble(u)));
}
}
/**
* Object filter spliterator.
* @param the type of data to iterate over
*/
static final class FilterSpliterator extends Spliterators.AbstractSpliterator {
private final Predicate super T> filter;
private final Spliterator original;
private boolean found;
public FilterSpliterator(Predicate super T> filter, Spliterator original) {
super(original.estimateSize(), original.characteristics() & ~Spliterator.SIZED);
checkNotNull(filter);
this.filter = filter;
this.original = original;
}
@Override
public Comparator super T> getComparator() {
return original.getComparator();
}
@Override
public boolean tryAdvance(final Consumer super T> action) {
found = false;
while (!found
&& original.tryAdvance(
item -> {
if (filter.test(item)) {
found = true;
action.accept(item);
}
})) {
// do nothing, work is done in tryAdvance
}
return found;
}
}
/**
* Object skip spliterator.
* @param the type of data to iterate over
*/
static final class SkipSpliterator extends Spliterators.AbstractSpliterator {
private long skip;
private final Spliterator original;
public SkipSpliterator(long skip, Spliterator original) {
super(
original.hasCharacteristics(Spliterator.SIZED)
? Math.max(0, original.estimateSize() - skip)
: Long.MAX_VALUE,
original.characteristics());
this.skip = skip;
this.original = original;
}
@Override
public Comparator super T> getComparator() {
return original.getComparator();
}
@Override
public boolean tryAdvance(Consumer super T> action) {
while (skip > 0) {
if (!original.tryAdvance(ignore -> { })) {
return false;
}
skip--;
}
return original.tryAdvance(action);
}
}
/**
* Object limit spliterator.
* @param the type of data to iterate over
*/
static final class LimitSpliterator extends Spliterators.AbstractSpliterator {
private final long limit;
private final Spliterator original;
private int position = 0;
public LimitSpliterator(long limit, Spliterator original) {
super(
original.hasCharacteristics(Spliterator.SIZED)
? Math.min(original.estimateSize(), limit)
: Long.MAX_VALUE,
original.characteristics());
this.limit = limit;
this.original = original;
}
@Override
public Comparator super T> getComparator() {
return original.getComparator();
}
@Override
public boolean tryAdvance(Consumer super T> action) {
if (position >= limit) {
return false;
}
boolean result = original.tryAdvance(action);
position++;
return result;
}
}
/**
* Main implementation of Stream, wrapping a single spliterator and an optional parent stream.
* @param
*/
static class StreamSource extends TerminatableStream> implements Stream {
private final Spliterator spliterator;
public StreamSource(TerminatableStream> prev, Spliterator spliterator) {
super(prev);
this.spliterator = spliterator;
}
// terminal
@Override
public Spliterator spliterator() {
terminate();
return spliterator;
}
@Override
public Iterator iterator() {
return Spliterators.iterator(spliterator());
}
@Override
public long count() {
terminate();
long count = 0;
while (spliterator.tryAdvance(a -> { })) {
count++;
}
return count;
}
@Override
public void forEach(Consumer super T> action) {
forEachOrdered(action);
}
@Override
public void forEachOrdered(Consumer super T> action) {
terminate();
spliterator.forEachRemaining(action);
}
@Override
public Object[] toArray() {
return toArray(Object[]::new);
}
@Override
public A[] toArray(IntFunction generator) {
List collected = collect(Collectors.toList());
return collected.toArray(generator.apply(collected.size()));
}
@Override
public R collect(
Supplier supplier, BiConsumer accumulator, BiConsumer combiner) {
return collect(
Collector.of(
supplier,
accumulator,
(a, b) -> {
combiner.accept(a, b);
return a;
}));
}
@Override
public R collect(final Collector super T, A, R> collector) {
return collector
.finisher()
.apply(
reduce(
collector.supplier().get(),
(a, t) -> {
collector.accumulator().accept(a, t);
return a;
},
collector.combiner()));
}
@Override
public Optional findFirst() {
terminate();
ValueConsumer holder = new ValueConsumer();
if (spliterator.tryAdvance(holder)) {
return Optional.of(holder.value);
}
return Optional.empty();
}
@Override
public Optional findAny() {
return findFirst();
}
@Override
public boolean anyMatch(Predicate super T> predicate) {
return filter(predicate).findFirst().isPresent();
}
@Override
public boolean allMatch(final Predicate super T> predicate) {
return !anyMatch(predicate.negate());
}
@Override
public boolean noneMatch(final Predicate super T> predicate) {
return !anyMatch(predicate);
}
@Override
public Optional min(final Comparator super T> comparator) {
return reduce(BinaryOperator.minBy(comparator));
}
@Override
public Optional max(final Comparator super T> comparator) {
return reduce(BinaryOperator.maxBy(comparator));
}
@Override
public T reduce(T identity, BinaryOperator accumulator) {
return reduce(identity, accumulator, accumulator);
}
@Override
public Optional reduce(BinaryOperator accumulator) {
ValueConsumer consumer = new ValueConsumer();
if (!spliterator.tryAdvance(consumer)) {
terminate();
return Optional.empty();
}
return Optional.of(reduce(consumer.value, accumulator));
}
// combiner is ignored, since we don't parallelize
@Override
public U reduce(
U identity, BiFunction accumulator, BinaryOperator combiner) {
terminate();
final ValueConsumer consumer = new ValueConsumer();
consumer.value = identity;
spliterator.forEachRemaining(
item -> {
consumer.accept(accumulator.apply(consumer.value, item));
});
return consumer.value;
}
// end terminal
// intermediate
@Override
public Stream filter(Predicate super T> predicate) {
throwIfTerminated();
return new StreamSource<>(this, new FilterSpliterator<>(predicate, spliterator));
}
@Override
public Stream map(Function super T, ? extends R> mapper) {
throwIfTerminated();
return new StreamSource<>(this, new MapToObjSpliterator<>(mapper, spliterator));
}
@Override
public IntStream mapToInt(ToIntFunction super T> mapper) {
throwIfTerminated();
return new IntStream.IntStreamSource(this, new MapToIntSpliterator<>(mapper, spliterator));
}
@Override
public LongStream mapToLong(ToLongFunction super T> mapper) {
throwIfTerminated();
return new LongStream.LongStreamSource(this, new MapToLongSpliterator<>(mapper, spliterator));
}
@Override
public DoubleStream mapToDouble(ToDoubleFunction super T> mapper) {
throwIfTerminated();
return new DoubleStream.DoubleStreamSource(
this, new MapToDoubleSpliterator<>(mapper, spliterator));
}
@Override
public Stream flatMap(final Function super T, ? extends Stream extends R>> mapper) {
throwIfTerminated();
final Spliterator extends Stream extends R>> spliteratorOfStreams =
new MapToObjSpliterator<>(mapper, spliterator);
AbstractSpliterator flatMapSpliterator =
new Spliterators.AbstractSpliterator(Long.MAX_VALUE, 0) {
Stream extends R> nextStream;
Spliterator extends R> next;
@Override
public boolean tryAdvance(Consumer super R> action) {
// look for a new spliterator
while (advanceToNextSpliterator()) {
// if we have one, try to read and use it
if (next.tryAdvance(action)) {
return true;
} else {
nextStream.close();
nextStream = null;
// failed, null it out so we can find another
next = null;
}
}
return false;
}
private boolean advanceToNextSpliterator() {
while (next == null) {
if (!spliteratorOfStreams.tryAdvance(
n -> {
if (n != null) {
nextStream = n;
next = n.spliterator();
}
})) {
return false;
}
}
return true;
}
};
return new StreamSource(this, flatMapSpliterator);
}
@Override
public IntStream flatMapToInt(Function super T, ? extends IntStream> mapper) {
throwIfTerminated();
final Spliterator extends IntStream> spliteratorOfStreams =
new MapToObjSpliterator<>(mapper, spliterator);
AbstractIntSpliterator flatMapSpliterator =
new Spliterators.AbstractIntSpliterator(Long.MAX_VALUE, 0) {
IntStream nextStream;
Spliterator.OfInt next;
@Override
public boolean tryAdvance(IntConsumer action) {
// look for a new spliterator
while (advanceToNextSpliterator()) {
// if we have one, try to read and use it
if (next.tryAdvance(action)) {
return true;
} else {
nextStream.close();
nextStream = null;
// failed, null it out so we can find another
next = null;
}
}
return false;
}
private boolean advanceToNextSpliterator() {
while (next == null) {
if (!spliteratorOfStreams.tryAdvance(
n -> {
if (n != null) {
nextStream = n;
next = n.spliterator();
}
})) {
return false;
}
}
return true;
}
};
return new IntStream.IntStreamSource(this, flatMapSpliterator);
}
@Override
public LongStream flatMapToLong(Function super T, ? extends LongStream> mapper) {
throwIfTerminated();
final Spliterator extends LongStream> spliteratorOfStreams =
new MapToObjSpliterator<>(mapper, spliterator);
AbstractLongSpliterator flatMapSpliterator =
new Spliterators.AbstractLongSpliterator(Long.MAX_VALUE, 0) {
LongStream nextStream;
Spliterator.OfLong next;
@Override
public boolean tryAdvance(LongConsumer action) {
// look for a new spliterator
while (advanceToNextSpliterator()) {
// if we have one, try to read and use it
if (next.tryAdvance(action)) {
return true;
} else {
nextStream.close();
nextStream = null;
// failed, null it out so we can find another
next = null;
}
}
return false;
}
private boolean advanceToNextSpliterator() {
while (next == null) {
if (!spliteratorOfStreams.tryAdvance(
n -> {
if (n != null) {
nextStream = n;
next = n.spliterator();
}
})) {
return false;
}
}
return true;
}
};
return new LongStream.LongStreamSource(this, flatMapSpliterator);
}
@Override
public DoubleStream flatMapToDouble(Function super T, ? extends DoubleStream> mapper) {
throwIfTerminated();
final Spliterator extends DoubleStream> spliteratorOfStreams =
new MapToObjSpliterator<>(mapper, spliterator);
AbstractDoubleSpliterator flatMapSpliterator =
new Spliterators.AbstractDoubleSpliterator(Long.MAX_VALUE, 0) {
DoubleStream nextStream;
Spliterator.OfDouble next;
@Override
public boolean tryAdvance(DoubleConsumer action) {
// look for a new spliterator
while (advanceToNextSpliterator()) {
// if we have one, try to read and use it
if (next.tryAdvance(action)) {
return true;
} else {
nextStream.close();
nextStream = null;
// failed, null it out so we can find another
next = null;
}
}
return false;
}
private boolean advanceToNextSpliterator() {
while (next == null) {
if (!spliteratorOfStreams.tryAdvance(
n -> {
if (n != null) {
nextStream = n;
next = n.spliterator();
}
})) {
return false;
}
}
return true;
}
};
return new DoubleStream.DoubleStreamSource(this, flatMapSpliterator);
}
@Override
public Stream distinct() {
throwIfTerminated();
HashSet seen = new HashSet<>();
return filter(seen::add);
}
@Override
public Stream sorted() {
throwIfTerminated();
Comparator c = (Comparator) Comparator.naturalOrder();
return sorted(c);
}
@Override
public Stream sorted(final Comparator super T> comparator) {
throwIfTerminated();
AbstractSpliterator sortedSpliterator =
new Spliterators.AbstractSpliterator(
spliterator.estimateSize(), spliterator.characteristics() | Spliterator.SORTED) {
Spliterator ordered = null;
@Override
public Comparator super T> getComparator() {
return comparator == Comparator.naturalOrder() ? null : comparator;
}
@Override
public boolean tryAdvance(Consumer super T> action) {
if (ordered == null) {
List list = new ArrayList<>();
spliterator.forEachRemaining(list::add);
Collections.sort(list, comparator);
ordered = list.spliterator();
}
return ordered.tryAdvance(action);
}
};
return new StreamSource<>(this, sortedSpliterator);
}
@Override
public Stream peek(final Consumer super T> action) {
checkNotNull(action);
throwIfTerminated();
AbstractSpliterator peekSpliterator =
new Spliterators.AbstractSpliterator(
spliterator.estimateSize(), spliterator.characteristics()) {
@Override
public boolean tryAdvance(final Consumer super T> innerAction) {
return spliterator.tryAdvance(
item -> {
action.accept(item);
innerAction.accept(item);
});
}
};
return new StreamSource<>(this, peekSpliterator);
}
@Override
public Stream limit(long maxSize) {
throwIfTerminated();
checkState(maxSize >= 0, "maxSize may not be negative");
return new StreamSource<>(this, new LimitSpliterator<>(maxSize, spliterator));
}
@Override
public Stream skip(long n) {
throwIfTerminated();
checkState(n >= 0, "n may not be negative");
if (n == 0) {
return this;
}
return new StreamSource<>(this, new SkipSpliterator<>(n, spliterator));
}
@Override
public boolean isParallel() {
throwIfTerminated();
return false;
}
@Override
public Stream sequential() {
throwIfTerminated();
return this;
}
@Override
public Stream parallel() {
throwIfTerminated();
// do nothing, no such thing as gwt+parallel
return this;
}
@Override
public Stream unordered() {
throwIfTerminated();
return this;
}
}
}