All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.FlowSensitiveInlineVariables Maven / Gradle / Ivy

Go to download

Closure Compiler is a JavaScript optimizing compiler. It parses your JavaScript, analyzes it, removes dead code and rewrites and minimizes what's left. It also checks syntax, variable references, and types, and warns about common JavaScript pitfalls. It is used in many of Google's JavaScript apps, including Gmail, Google Web Search, Google Maps, and Google Docs. This binary checks for style issues such as incorrect or missing JSDoc usage, and missing goog.require() statements. It does not do more advanced checks such as typechecking.

There is a newer version: v20200830
Show newest version
/*
 * Copyright 2009 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.javascript.jscomp.ControlFlowGraph.AbstractCfgNodeTraversalCallback;
import com.google.javascript.jscomp.ControlFlowGraph.Branch;
import com.google.javascript.jscomp.MustBeReachingVariableDef.Definition;
import com.google.javascript.jscomp.NodeTraversal.AbstractShallowCallback;
import com.google.javascript.jscomp.NodeTraversal.ScopedCallback;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphEdge;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphNode;
import com.google.javascript.rhino.Node;

import java.util.Collection;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.Set;

/**
 * Inline variables when possible. Using the information from
 * {@link MaybeReachingVariableUse} and {@link MustBeReachingVariableDef},
 * this pass attempts to inline a variable by placing the value at the
 * definition where the variable is used. The basic requirements for inlining
 * are the following:
 *
 * 
    *
  • There is exactly one reaching definition at the use of that variable *
  • *
  • There is exactly one use for that definition of the variable *
  • *
* *

Other requirements can be found in {@link Candidate#canInline}. Currently * this pass does not operate on the global scope due to compilation time. * */ class FlowSensitiveInlineVariables implements CompilerPass, ScopedCallback { /** * Implementation: * * This pass first perform a traversal to gather a list of Candidates that * could be inlined using {@link GatherCandiates}. * * The second step involves verifying that each candidate is actually safe * to inline with {@link Candidate#canInline(Scope)} and finally perform * inlining using {@link Candidate#inlineVariable()}. * * The reason for the delayed evaluation of the candidates is because we * need two separate dataflow result. */ private final AbstractCompiler compiler; // These two pieces of data is persistent in the whole execution of enter // scope. private ControlFlowGraph cfg; private Set candidates; private MustBeReachingVariableDef reachingDef; private MaybeReachingVariableUse reachingUses; private static final Predicate SIDE_EFFECT_PREDICATE = new Predicate() { @Override public boolean apply(Node n) { // When the node is null it means, we reached the implicit return // where the function returns (possibly without an return statement) if (n == null) { return false; } // TODO(user): We only care about calls to functions that // passes one of the dependent variable to a non-side-effect free // function. if (n.isCall() && NodeUtil.functionCallHasSideEffects(n)) { return true; } if (n.isNew() && NodeUtil.constructorCallHasSideEffects(n)) { return true; } if (n.isDelProp()) { return true; } for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { if (!ControlFlowGraph.isEnteringNewCfgNode(c) && apply(c)) { return true; } } return false; } }; public FlowSensitiveInlineVariables(AbstractCompiler compiler) { this.compiler = compiler; } @Override public final boolean shouldTraverse(NodeTraversal t, Node n, Node parent) { return !n.isScript() || !t.getInput().isExtern(); } @Override public void enterScope(NodeTraversal t) { if (t.inGlobalScope()) { return; // Don't even brother. All global variables are likely escaped. } Preconditions.checkState(t.getScopeRoot().isFunction()); Node scopeRoot = t.getScopeRoot(); if (!isCandidateFunction(scopeRoot)) { return; } if (LiveVariablesAnalysis.MAX_VARIABLES_TO_ANALYZE < t.getScope().getVarCount()) { return; } // Compute the forward reaching definition. ControlFlowAnalysis cfa = new ControlFlowAnalysis(compiler, false, true); // Process the body of the function. cfa.process(null, t.getScopeRoot()); cfg = cfa.getCfg(); reachingDef = new MustBeReachingVariableDef(cfg, t.getScope(), compiler); reachingDef.analyze(); candidates = new LinkedHashSet<>(); // Using the forward reaching definition search to find all the inline // candidates NodeTraversal.traverseEs6(compiler, t.getScopeRoot().getLastChild(), new GatherCandiates()); // Compute the backward reaching use. The CFG can be reused. reachingUses = new MaybeReachingVariableUse(cfg, t.getScope(), compiler); reachingUses.analyze(); while (!candidates.isEmpty()) { Candidate c = candidates.iterator().next(); if (c.canInline(t.getScope())) { c.inlineVariable(); candidates.remove(c); // If candidate "c" has dependencies, then inlining it may have introduced new dependencies // for our other inlining candidates. MustBeReachingVariableDef uses a dependency graph in // its analysis. Generating a new dependency graph will need another CFG computation. // Ideally we should iterate to a fixed point, but that can be costly. Therefore, we use // a conservative heuristic here: For each candidate "other", we back off if its set of // dependencies cannot contain all of "c"'s dependencies. if (!c.defMetadata.depends.isEmpty()) { for (Iterator it = candidates.iterator(); it.hasNext();) { Candidate other = it.next(); if (other.defMetadata.depends.contains(t.getScope().getVar(c.varName)) && !other.defMetadata.depends.containsAll(c.defMetadata.depends)) { it.remove(); } } } } else { candidates.remove(c); } } } private boolean isCandidateFunction(Node fn) { Node fnBody = fn.getLastChild(); return containsCandidateExpressions(fnBody); } private static boolean containsCandidateExpressions(Node n) { if (n.isFunction()) { // don't recurse into inner functions or into expressions the can't contain declarations. return false; } if (NodeUtil.isNameDeclaration(n) || isAssignmentToName(n)) { // if it is a simple assignment if (n.getFirstChild().isName()) { return true; } } for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { if (containsCandidateExpressions(c)) { return true; } } return false; } private static boolean isAssignmentToName(Node n) { if (NodeUtil.isAssignmentOp(n) || n.isDec() || n.isInc()) { // if it is a simple assignment return (n.getFirstChild().isName()); } return false; } @Override public void exitScope(NodeTraversal t) {} @Override public void process(Node externs, Node root) { (new NodeTraversal(compiler, this)).traverseRoots(externs, root); } @Override public void visit(NodeTraversal t, Node n, Node parent) { // TODO(user): While the helpers do a subtree traversal on the AST, the // compiler pass itself only traverse the AST to look for function // declarations to perform dataflow analysis on. We could combine // the traversal in DataFlowAnalysis's computeEscaped later to save some // time. } private class GatherCandiatesCfgNodeCallback extends AbstractCfgNodeTraversalCallback { Node cfgNode = null; public void setCfgNode(Node cfgNode) { this.cfgNode = cfgNode; } @Override public void visit(NodeTraversal t, Node n, Node parent) { if (n.isName()) { // n.getParent() isn't null. This just the case where n is the root // node that gatherCb started at. if (parent == null) { return; } // Make sure that the name node is purely a read. if ((NodeUtil.isAssignmentOp(parent) && parent.getFirstChild() == n) || parent.isVar() || parent.isInc() || parent.isDec() || parent.isParamList() || parent.isCatch()) { return; } String name = n.getString(); if (compiler.getCodingConvention().isExported(name)) { return; } Definition def = reachingDef.getDef(name, cfgNode); // TODO(nicksantos): We need to add some notion of @const outer // scope vars. We can inline those just fine. if (def != null && !reachingDef.dependsOnOuterScopeVars(def)) { candidates.add(new Candidate(name, def, n, cfgNode)); } } } }; /** * Gathers a list of possible candidates for inlining based only on * information from {@link MustBeReachingVariableDef}. The list will be stored * in {@code candidates} and the validity of each inlining Candidate should * be later verified with {@link Candidate#canInline(Scope)} when * {@link MaybeReachingVariableUse} has been performed. */ private class GatherCandiates extends AbstractShallowCallback { final GatherCandiatesCfgNodeCallback gatherCb = new GatherCandiatesCfgNodeCallback(); @Override public void visit(NodeTraversal t, Node n, Node parent) { DiGraphNode graphNode = cfg.getDirectedGraphNode(n); if (graphNode == null) { // Not a CFG node. return; } final Node cfgNode = n; gatherCb.setCfgNode(cfgNode); NodeTraversal.traverseEs6(compiler, cfgNode, gatherCb); } } /** * Models the connection between a definition and a use of that definition. */ private class Candidate { // Name of the variable. private final String varName; // Nodes related to the definition. private Node def; private final Definition defMetadata; // Nodes related to the use. private final Node use; private final Node useCfgNode; // Number of uses of the variable within the current CFG node. private int numUsesWithinCfgNode; Candidate(String varName, Definition defMetadata, Node use, Node useCfgNode) { Preconditions.checkArgument(use.isName()); this.varName = varName; this.defMetadata = defMetadata; this.use = use; this.useCfgNode = useCfgNode; } private Node getDefCfgNode() { return defMetadata.node; } private boolean canInline(final Scope scope) { // Cannot inline a parameter. if (getDefCfgNode().isFunction()) { return false; } getDefinition(getDefCfgNode()); getNumUseInUseCfgNode(useCfgNode); // Definition was not found. if (def == null) { return false; } // Check that the assignment isn't used as a R-Value. // TODO(user): Certain cases we can still inline. if (def.isAssign() && !NodeUtil.isExprAssign(def.getParent())) { return false; } // The right of the definition has side effect: // Example, for x: // x = readProp(b), modifyProp(b); print(x); if (checkRightOf(def, getDefCfgNode(), SIDE_EFFECT_PREDICATE)) { return false; } // Similar check as the above but this time, all the sub-expressions // left of the use of the variable. // x = readProp(b); modifyProp(b), print(x); if (checkLeftOf(use, useCfgNode, SIDE_EFFECT_PREDICATE)) { return false; } // TODO(user): Side-effect is OK sometimes. As long as there are no // side-effect function down all paths to the use. Once we have all the // side-effect analysis tool. if (NodeUtil.mayHaveSideEffects(def.getLastChild(), compiler)) { return false; } // TODO(user): We could inline all the uses if the expression is short. // Finally we have to make sure that there are no more than one use // in the program and in the CFG node. Even when it is semantically // correctly inlining twice increases code size. if (numUsesWithinCfgNode != 1) { return false; } // Make sure that the name is not within a loop if (NodeUtil.isWithinLoop(use)) { return false; } Collection uses = reachingUses.getUses(varName, getDefCfgNode()); if (uses.size() != 1) { return false; } // We give up inlining stuff with R-Value that has: // 1) GETPROP, GETELEM, // 2) anything that creates a new object. // 3) a direct reference to a catch expression. // Example: // var x = a.b.c; j.c = 1; print(x); // Inlining print(a.b.c) is not safe consider j and be alias to a.b. // TODO(user): We could get more accuracy by looking more in-detail // what j is and what x is trying to into to. // TODO(johnlenz): rework catch expression handling when we // have lexical scope support so catch expressions don't // need to be special cased. if (NodeUtil.has( def.getLastChild(), new Predicate() { @Override public boolean apply(Node input) { switch (input.getToken()) { case GETELEM: case GETPROP: case ARRAYLIT: case OBJECTLIT: case REGEXP: case NEW: return true; case NAME: Var var = scope.getOwnSlot(input.getString()); if (var != null && var.getParentNode().isCatch()) { return true; } // fall through default: break; } return false; } }, new Predicate() { @Override public boolean apply(Node input) { // Recurse if the node is not a function. return !input.isFunction(); } })) { return false; } // We can skip the side effect check along the paths of two nodes if // they are just next to each other. if (NodeUtil.isStatementBlock(getDefCfgNode().getParent()) && getDefCfgNode().getNext() != useCfgNode) { // Similar side effect check as above but this time the side effect is // else where along the path. // x = readProp(b); while(modifyProp(b)) {}; print(x); CheckPathsBetweenNodes pathCheck = new CheckPathsBetweenNodes<>( cfg, cfg.getDirectedGraphNode(getDefCfgNode()), cfg.getDirectedGraphNode(useCfgNode), SIDE_EFFECT_PREDICATE, Predicates. >alwaysTrue(), false); if (pathCheck.somePathsSatisfyPredicate()) { return false; } } return true; } /** * Actual transformation. */ private void inlineVariable() { Node defParent = def.getParent(); Node useParent = use.getParent(); if (def.isAssign()) { Node rhs = def.getLastChild(); rhs.detach(); // Oh yes! I have grandparent to remove this. Preconditions.checkState(defParent.isExprResult()); while (defParent.getParent().isLabel()) { defParent = defParent.getParent(); } compiler.reportChangeToEnclosingScope(defParent); defParent.detach(); useParent.replaceChild(use, rhs); } else if (defParent.isVar()) { Node rhs = def.getLastChild(); def.removeChild(rhs); useParent.replaceChild(use, rhs); } else { throw new IllegalStateException("No other definitions can be inlined."); } compiler.reportChangeToEnclosingScope(useParent); } /** * Set the def node * * @param n A node that has a corresponding CFG node in the CFG. */ private void getDefinition(Node n) { AbstractCfgNodeTraversalCallback gatherCb = new AbstractCfgNodeTraversalCallback() { @Override public void visit(NodeTraversal t, Node n, Node parent) { switch (n.getToken()) { case NAME: if (n.getString().equals(varName) && n.hasChildren()) { def = n; } return; case ASSIGN: Node lhs = n.getFirstChild(); if (lhs.isName() && lhs.getString().equals(varName)) { def = n; } return; default: break; } } }; NodeTraversal.traverseEs6(compiler, n, gatherCb); } /** * Computes the number of uses of the variable varName and store it in * numUseWithinUseCfgNode. */ private void getNumUseInUseCfgNode(final Node cfgNode) { numUsesWithinCfgNode = 0; AbstractCfgNodeTraversalCallback gatherCb = new AbstractCfgNodeTraversalCallback() { @Override public void visit(NodeTraversal t, Node n, Node parent) { if (n.isName() && n.getString().equals(varName)) { // We make a special exception when the entire cfgNode is a chain // of assignments, since in that case the assignment statements // will happen after the inlining of the right hand side. // TODO(blickly): Make the SIDE_EFFECT_PREDICATE check more exact // and remove this special case. if (parent.isAssign() && (parent.getFirstChild() == n) && isAssignChain(parent, cfgNode)) { // Don't count lhs of top-level assignment chain return; } else { numUsesWithinCfgNode++; } } } private boolean isAssignChain(Node child, Node ancestor) { for (Node n = child; n != ancestor; n = n.getParent()) { if (!n.isAssign()) { return false; } } return true; } }; NodeTraversal.traverseEs6(compiler, cfgNode, gatherCb); } } /** * Given an expression by its root and sub-expression n, return true if there * the predicate is true for some expression on the right of n. * * Example: * * NotChecked(), NotChecked(), n, Checked(), Checked(); */ private static boolean checkRightOf( Node n, Node expressionRoot, Predicate predicate) { for (Node p = n; p != expressionRoot; p = p.getParent()) { for (Node cur = p.getNext(); cur != null; cur = cur.getNext()) { if (predicate.apply(cur)) { return true; } } } return false; } /** * Given an expression by its root and sub-expression n, return true if there * the predicate is true for some expression on the left of n. * * Example: * * Checked(), Checked(), n, NotChecked(), NotChecked(); */ private static boolean checkLeftOf( Node n, Node expressionRoot, Predicate predicate) { for (Node p = n; p != expressionRoot; p = p.getParent()) { for (Node cur = p.getParent().getFirstChild(); cur != p; cur = cur.getNext()) { if (predicate.apply(cur)) { return true; } } } return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy