All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.CoalesceVariableNames Maven / Gradle / Ivy

Go to download

Closure Compiler is a JavaScript optimizing compiler. It parses your JavaScript, analyzes it, removes dead code and rewrites and minimizes what's left. It also checks syntax, variable references, and types, and warns about common JavaScript pitfalls. It is used in many of Google's JavaScript apps, including Gmail, Google Web Search, Google Maps, and Google Docs. This binary checks for style issues such as incorrect or missing JSDoc usage, and missing goog.require() statements. It does not do more advanced checks such as typechecking.

There is a newer version: v20200830
Show newest version
/*
 * Copyright 2008 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;

import com.google.common.base.Joiner;
import com.google.javascript.jscomp.AbstractCompiler.LifeCycleStage;
import com.google.javascript.jscomp.ControlFlowGraph.Branch;
import com.google.javascript.jscomp.DataFlowAnalysis.FlowState;
import com.google.javascript.jscomp.LiveVariablesAnalysis.LiveVariableLattice;
import com.google.javascript.jscomp.NodeTraversal.AbstractPostOrderCallback;
import com.google.javascript.jscomp.NodeTraversal.ScopedCallback;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphNode;
import com.google.javascript.jscomp.graph.GraphColoring;
import com.google.javascript.jscomp.graph.GraphColoring.GreedyGraphColoring;
import com.google.javascript.jscomp.graph.GraphNode;
import com.google.javascript.jscomp.graph.LinkedUndirectedGraph;
import com.google.javascript.jscomp.graph.UndiGraph;
import com.google.javascript.jscomp.parsing.parser.FeatureSet;
import com.google.javascript.rhino.IR;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.Token;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Deque;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;
import javax.annotation.Nullable;

/**
 * Reuse variable names if possible.
 *
 * 

For example, from var x = 1; print(x); var y = 2; print(y); * to var x = 1; print(x); x = 2; print(x). The benefits are * slightly shorter code because of the removed var declaration, * less unique variables in hope for better renaming, and finally better gzip * compression. * *

The pass operates similar to a typical register allocator found in an * optimizing compiler by first computing live ranges with * {@link LiveVariablesAnalysis} and a variable interference graph. Then it uses * graph coloring in {@link GraphColoring} to determine which two variables can * be merge together safely. * */ class CoalesceVariableNames extends AbstractPostOrderCallback implements CompilerPass, ScopedCallback { private final AbstractCompiler compiler; private final Deque> colorings; private final Deque liveAnalyses; private final boolean usePseudoNames; private LiveVariablesAnalysis liveness; private final Comparator coloringTieBreaker = new Comparator() { @Override public int compare(Var v1, Var v2) { return liveness.getVarIndex(v1.getName()) - liveness.getVarIndex(v2.getName()); } }; /** * @param usePseudoNames For debug purposes, when merging variable foo and bar * to foo, rename both variable to foo_bar. */ CoalesceVariableNames(AbstractCompiler compiler, boolean usePseudoNames) { // The code is normalized at this point in the compilation process. This allows us to use the // fact that all variables have been given unique names. We can hoist coalesced variables to // VARS because we know that shadowing can't occur. checkState(compiler.getLifeCycleStage().isNormalized()); this.compiler = compiler; colorings = new ArrayDeque<>(); liveAnalyses = new ArrayDeque<>(); this.usePseudoNames = usePseudoNames; } @Override public void process(Node externs, Node root) { checkNotNull(externs); checkNotNull(root); NodeTraversal.traverse(compiler, root, this); compiler.setLifeCycleStage(LifeCycleStage.RAW); } private static boolean shouldOptimizeScope(NodeTraversal t) { // TODO(user): We CAN do this in the global scope, just need to be // careful when something is exported. Liveness uses bit-vector for live // sets so I don't see compilation time will be a problem for running this // pass in the global scope. if (!t.getScopeRoot().isFunction()) { return false; } Map allVarsInFn = new HashMap<>(); List orderedVars = new ArrayList<>(); NodeUtil.getAllVarsDeclaredInFunction( allVarsInFn, orderedVars, t.getCompiler(), t.getScopeCreator(), t.getScope()); return LiveVariablesAnalysis.MAX_VARIABLES_TO_ANALYZE > orderedVars.size(); } @Override public void enterScope(NodeTraversal t) { Scope scope = t.getScope(); if (!shouldOptimizeScope(t)) { return; } checkState(scope.isFunctionScope(), scope); // live variables analysis is based off of the control flow graph ControlFlowGraph cfg = t.getControlFlowGraph(); liveness = new LiveVariablesAnalysis( cfg, scope, null, compiler, new Es6SyntacticScopeCreator(compiler)); if (FeatureSet.ES3.contains(compiler.getOptions().getOutputFeatureSet())) { // If the function has exactly 2 params, mark them as escaped. This is a work-around for a // bug in IE 8 and below, where it throws an exception if you write to the parameters of the // callback in a sort(). See http://blickly.github.io/closure-compiler-issues/#58 and // https://www.zachleat.com/web/array-sort/ Node enclosingFunction = scope.getRootNode(); if (NodeUtil.getFunctionParameters(enclosingFunction).hasTwoChildren()) { liveness.markAllParametersEscaped(); } } liveness.analyze(); liveAnalyses.push(liveness); // The interference graph has the function's variables as its nodes and any interference // between the variables as the edges. Interference between two variables means that they are // alive at overlapping times, which means that their variable names cannot be coalesced. UndiGraph interferenceGraph = computeVariableNamesInterferenceGraph(cfg, liveness.getEscapedLocals()); // Color any interfering variables with different colors and any variables that can be safely // coalesced wih the same color. GraphColoring coloring = new GreedyGraphColoring<>(interferenceGraph, coloringTieBreaker); coloring.color(); colorings.push(coloring); } @Override public void exitScope(NodeTraversal t) { if (!shouldOptimizeScope(t)) { return; } colorings.pop(); liveAnalyses.pop(); liveness = liveAnalyses.peek(); } @Override public void visit(NodeTraversal t, Node n, Node parent) { if (colorings.isEmpty() || !n.isName() || parent.isFunction()) { // Don't rename named functions. return; } Var var = liveness.getAllVariables().get(n.getString()); GraphNode vNode = colorings.peek().getGraph().getNode(var); if (vNode == null) { // This is not a local. return; } Var coalescedVar = colorings.peek().getPartitionSuperNode(var); if (!usePseudoNames) { if (vNode.getValue().equals(coalescedVar)) { // The coalesced name is itself, nothing to do. return; } // Rename. n.setString(coalescedVar.name); compiler.reportChangeToEnclosingScope(n); if (NodeUtil.isNameDeclaration(parent) || (NodeUtil.getEnclosingType(n, Token.DESTRUCTURING_LHS) != null && NodeUtil.isLhsByDestructuring(n))) { makeDeclarationVar(coalescedVar); removeVarDeclaration(n); } } else { // This code block is slow but since usePseudoName is for debugging, // we should not sacrifice performance for non-debugging compilation to // make this fast. String pseudoName = null; Set allMergedNames = new TreeSet<>(); for (Var iVar : liveness.getAllVariablesInOrder()) { // Look for all the variables that can be merged (in the graph by now) // and it is merged with the current coalescedVar. if (colorings.peek().getGraph().getNode(iVar) != null && coalescedVar.equals(colorings.peek().getPartitionSuperNode(iVar))) { allMergedNames.add(iVar.name); } } // Keep its original name. if (allMergedNames.size() == 1) { return; } pseudoName = Joiner.on("_").join(allMergedNames); while (t.getScope().hasSlot(pseudoName)) { pseudoName += "$"; } // Rename. n.setString(pseudoName); compiler.reportChangeToEnclosingScope(n); if (!vNode.getValue().equals(coalescedVar) && (NodeUtil.isNameDeclaration(parent) || (NodeUtil.getEnclosingType(n, Token.DESTRUCTURING_LHS) != null && NodeUtil.isLhsByDestructuring(n)))) { makeDeclarationVar(coalescedVar); removeVarDeclaration(n); } } } /** * In order to determine when it is appropriate to coalesce two variables, we use a live variables * analysis to make sure they are not alive at the same time. We take every pairing of variables * and for every CFG node, determine whether the two variables are alive at the same time. If two * variables are alive at the same time, we create an edge between them in the interference graph. * The interference graph is the input to a graph coloring algorithm that ensures any interfering * variables are marked in different color groups, while variables that can safely be coalesced * are assigned the same color group. * * @param cfg * @param escaped we don't want to coalesce any escaped variables * @return graph with variable nodes and edges representing variable interference */ private UndiGraph computeVariableNamesInterferenceGraph( ControlFlowGraph cfg, Set escaped) { UndiGraph interferenceGraph = LinkedUndirectedGraph.create(); // First create a node for each non-escaped variable. We add these nodes in the order in which // they appear in the code because we want the names that appear earlier in the code to be used // when coalescing to variables that appear later in the code. List orderedVariables = liveness.getAllVariablesInOrder(); for (Var v : orderedVariables) { if (escaped.contains(v)) { continue; } // NOTE(user): In theory, we CAN coalesce function names just like any variables. Our // Liveness analysis captures this just like it as described in the specification. However, we // saw some zipped and unzipped size increase after this. We are not totally sure why // that is but, for now, we will respect the dead functions and not play around with it if (v.getParentNode().isFunction()) { continue; } // NOTE: we skip class declarations for a combination of two reasons: // 1. they are block-scoped, so we would need to rewrite them as class expressions // e.g. `class C {}` -> `var C = class {}` to avoid incorrect semantics // (see testDontCoalesceClassDeclarationsWithDestructuringDeclaration). // This is possible but increases pre-gzip code size and complexity. // 2. since function declaration coalescing seems to cause a size regression (as discussed // above) we assume that coalescing class names may cause a similar size regression. if (v.getParentNode().isClass()) { continue; } // Skip lets and consts that have multiple variables declared in them, otherwise this produces // incorrect semantics. See test case "testCapture". // Skipping vars technically isn't needed for correct semantics, but works around a Safari // bug for var redeclarations (https://github.com/google/closure-compiler/issues/3164) if (isInMultipleLvalueDecl(v)) { continue; } interferenceGraph.createNode(v); } // Go through each variable and try to connect them. int v1Index = -1; for (Var v1 : orderedVariables) { v1Index++; int v2Index = -1; NEXT_VAR_PAIR: for (Var v2 : orderedVariables) { v2Index++; // Skip duplicate pairs. if (v1Index > v2Index) { continue; } if (!interferenceGraph.hasNode(v1) || !interferenceGraph.hasNode(v2)) { // Skip nodes that were not added. They are globals and escaped // locals. Also avoid merging a variable with itself. continue NEXT_VAR_PAIR; } if (v1.isParam() && v2.isParam()) { interferenceGraph.connectIfNotFound(v1, null, v2); continue NEXT_VAR_PAIR; } // Go through every CFG node in the program and look at // this variable pair. If they are both live at the same // time, add an edge between them and continue to the next pair. NEXT_CROSS_CFG_NODE: for (DiGraphNode cfgNode : cfg.getDirectedGraphNodes()) { if (cfg.isImplicitReturn(cfgNode)) { continue NEXT_CROSS_CFG_NODE; } FlowState state = cfgNode.getAnnotation(); // Check the live states and add edge when possible. if ((state.getIn().isLive(v1Index) && state.getIn().isLive(v2Index)) || (state.getOut().isLive(v1Index) && state.getOut().isLive(v2Index))) { interferenceGraph.connectIfNotFound(v1, null, v2); continue NEXT_VAR_PAIR; } } // v1 and v2 might not have an edge between them! woohoo. there's // one last sanity check that we have to do: we have to check // if there's a collision *within* the cfg node. NEXT_INTRA_CFG_NODE: for (DiGraphNode cfgNode : cfg.getDirectedGraphNodes()) { if (cfg.isImplicitReturn(cfgNode)) { continue NEXT_INTRA_CFG_NODE; } FlowState state = cfgNode.getAnnotation(); boolean v1OutLive = state.getOut().isLive(v1Index); boolean v2OutLive = state.getOut().isLive(v2Index); CombinedLiveRangeChecker checker = new CombinedLiveRangeChecker( cfgNode.getValue(), new LiveRangeChecker(v1, v2OutLive ? null : v2), new LiveRangeChecker(v2, v1OutLive ? null : v1)); checker.check(cfgNode.getValue()); if (checker.connectIfCrossed(interferenceGraph)) { continue NEXT_VAR_PAIR; } } } } return interferenceGraph; } /** * Returns whether this variable's declaration also declares other names. * *

For example, this would return true for `x` in `let [x, y, z] = []`; */ private boolean isInMultipleLvalueDecl(Var v) { Token declarationType = v.declarationType(); switch (declarationType) { case LET: case CONST: case VAR: Node nameDecl = NodeUtil.getEnclosingNode(v.getNode(), NodeUtil::isNameDeclaration); return NodeUtil.findLhsNodesInNode(nameDecl).size() > 1; default: return false; } } /** * A simple wrapper to call two LiveRangeChecker callbacks during the same traversal. */ private static class CombinedLiveRangeChecker { private final Node root; private final LiveRangeChecker callback1; private final LiveRangeChecker callback2; CombinedLiveRangeChecker( Node root, LiveRangeChecker callback1, LiveRangeChecker callback2) { this.root = root; this.callback1 = callback1; this.callback2 = callback2; } void check(Node n) { // For most AST nodes, traverse the subtree in postorder because that's how the expressions // are evaluated. if (n == root || !ControlFlowGraph.isEnteringNewCfgNode(n)) { if ((n.isDestructuringLhs() && n.hasTwoChildren()) || (n.isAssign() && n.getFirstChild().isDestructuringPattern()) || n.isDefaultValue()) { // Evaluate the rhs of a destructuring assignment/declaration before the lhs. check(n.getSecondChild()); check(n.getFirstChild()); } else { for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { check(c); } } visit(n, n.getParent()); } } void visit(Node n, Node parent) { if (LiveRangeChecker.shouldVisit(n)) { callback1.visit(n, parent); callback2.visit(n, parent); } } boolean connectIfCrossed(UndiGraph interferenceGraph) { if (callback1.crossed || callback2.crossed) { Var v1 = callback1.def; Var v2 = callback2.def; interferenceGraph.connectIfNotFound(v1, null, v2); return true; } return false; } } /** * Remove variable declaration if the variable has been coalesced with another variable that has * already been declared. * *

A precondition is that if the variable has already been declared, it must be the only lvalue * in said declaration. For example, this method will not accept `var x = 1, y = 2`. In theory we * could leave in the `var` declaration, but var shadowing of params triggers a Safari bug: * https://bugs.webkit.org/show_bug.cgi?id=182414 Another * * @param name name node of the variable being coalesced */ private static void removeVarDeclaration(Node name) { Node var = NodeUtil.getEnclosingNode(name, NodeUtil::isNameDeclaration); Node parent = var.getParent(); if (var.getFirstChild().isDestructuringLhs()) { // convert `const [x] = arr` to `[x] = arr` // a precondition for this method is that `x` is the only lvalue in the destructuring pattern Node destructuringLhs = var.getFirstChild(); Node pattern = destructuringLhs.getFirstChild().detach(); if (NodeUtil.isEnhancedFor(parent)) { var.replaceWith(pattern); } else { Node rvalue = var.getFirstFirstChild().detach(); var.replaceWith(NodeUtil.newExpr(IR.assign(pattern, rvalue).srcref(var))); } } else if (NodeUtil.isEnhancedFor(parent)) { // convert `for (let x of ...` to `for (x of ...` parent.replaceChild(var, name.detach()); } else { // either `var x = 0;` or `var x;` checkState(var.hasOneChild() && var.getFirstChild() == name, var); if (name.hasChildren()) { // convert `let x = 0;` to `x = 0;` Node value = name.removeFirstChild(); var.removeChild(name); Node assign = IR.assign(name, value).srcref(name); // We don't need to wrapped it with EXPR node if it is within a FOR. if (!parent.isVanillaFor()) { assign = NodeUtil.newExpr(assign); } parent.replaceChild(var, assign); } else { // convert `let x;` to `` // and `for (let x;;) {}` to `for (;;) {}` NodeUtil.removeChild(parent, var); } } } /** * Because the code has already been normalized by the time this pass runs, we can safely * redeclare any let and const coalesced variables as vars */ private static void makeDeclarationVar(Var coalescedName) { if (coalescedName.isLet() || coalescedName.isConst()) { Node declNode = NodeUtil.getEnclosingNode(coalescedName.getParentNode(), NodeUtil::isNameDeclaration); declNode.setToken(Token.VAR); } } private static class LiveRangeChecker { boolean defFound = false; boolean crossed = false; private final Var def; @Nullable private final Var use; public LiveRangeChecker(Var def, Var use) { this.def = checkNotNull(def); this.use = use; } /** * @return Whether any LiveRangeChecker would be interested in the node. */ public static boolean shouldVisit(Node n) { return (n.isName() || (n.hasChildren() && n.getFirstChild().isName())); } void visit(Node n, Node parent) { if (!defFound && isAssignTo(def, n, parent)) { defFound = true; } if (defFound && (use == null || isReadFrom(use, n))) { crossed = true; } } static boolean isAssignTo(Var var, Node n, Node parent) { if (n.isName()) { if (parent.isParamList()) { // In a function declaration, the formal parameters are assigned. return var.getName().equals(n.getString()); } else if (NodeUtil.isNameDeclaration(parent) && n.hasChildren()) { // If this is a VAR declaration, if the name node has a child, we are // assigning to that name. return var.getName().equals(n.getString()); } else if (NodeUtil.isLhsByDestructuring(n)) { return var.getName().equals(n.getString()); } } else if (NodeUtil.isAssignmentOp(n)) { // Lastly, any assignmentOP is also an assign. Node name = n.getFirstChild(); return name.isName() && var.getName().equals(name.getString()); } return false; // Definitely a read. } static boolean isReadFrom(Var var, Node name) { return name.isName() && var.getName().equals(name.getString()) && !NodeUtil.isNameDeclOrSimpleAssignLhs(name, name.getParent()); } } }