All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.AbstractPeepholeOptimization Maven / Gradle / Ivy

Go to download

Closure Compiler is a JavaScript optimizing compiler. It parses your JavaScript, analyzes it, removes dead code and rewrites and minimizes what's left. It also checks syntax, variable references, and types, and warns about common JavaScript pitfalls. It is used in many of Google's JavaScript apps, including Gmail, Google Web Search, Google Maps, and Google Docs. This binary checks for style issues such as incorrect or missing JSDoc usage, and missing goog.require() statements. It does not do more advanced checks such as typechecking.

There is a newer version: v20200830
Show newest version
/*
 * Copyright 2010 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.Preconditions.checkNotNull;

import com.google.javascript.jscomp.parsing.parser.FeatureSet;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.jstype.TernaryValue;

/**
 * An abstract class whose implementations run peephole optimizations:
 * optimizations that look at a small section of code and either remove
 * that code (if it is not needed) or replaces it with smaller code.
 */
abstract class AbstractPeepholeOptimization {

  /** Intentionally not exposed to subclasses */
  private AbstractCompiler compiler;
  /** Intentionally not exposed to subclasses */
  private AstAnalyzer astAnalyzer;

  /**
   * Given a node to optimize and a traversal, optimize the node. Subclasses
   * should override to provide their own peephole optimization.
   *
   * @param subtree The subtree that will be optimized.
   * @return The new version of the subtree (or null if the subtree or one of
   * its parents was removed from the AST). If the subtree has not changed,
   * this method must return {@code subtree}.
   */
  abstract Node optimizeSubtree(Node subtree);

  /**
   * Helper method for reporting an error to the compiler when applying a
   * peephole optimization.
   *
   * @param diagnostic The error type
   * @param n The node for which the error should be reported
   */
  protected void report(DiagnosticType diagnostic, Node n) {
    JSError error = JSError.make(n, diagnostic, n.toString());
    compiler.report(error);
  }

  /**
   * Are the nodes equal for the purpose of inlining?
   * If type aware optimizations are on, type equality is checked.
   */
  protected boolean areNodesEqualForInlining(Node n1, Node n2) {
    /* Our implementation delegates to the compiler. We provide this
     * method because we don't want to expose Compiler to PeepholeOptimizations.
     */
    checkNotNull(compiler);
    return compiler.areNodesEqualForInlining(n1, n2);
  }

  /**
   *  Is the current AST normalized? (e.g. has the Normalize pass been run
   *  and has the Denormalize pass not yet been run?)
   */
  protected boolean isASTNormalized() {
    checkNotNull(compiler);

    return compiler.getLifeCycleStage().isNormalized();
  }

  /** Informs the optimization that a traversal will begin. */
  void beginTraversal(AbstractCompiler compiler) {
    this.compiler = checkNotNull(compiler);
    astAnalyzer = compiler.getAstAnalyzer();
  }

  /** Returns whether the node may create new mutable state, or change existing state. */
  protected boolean mayEffectMutableState(Node n) {
    return astAnalyzer.mayEffectMutableState(n);
  }

  /** Returns whether the node may have side effects when executed. */
  protected boolean mayHaveSideEffects(Node n) {
    return astAnalyzer.mayHaveSideEffects(n);
  }

  /**
   * Returns the number value of the node if it has one and it cannot have side effects.
   *
   * 

Returns {@code null} otherwise. */ protected Double getSideEffectFreeNumberValue(Node n) { Double value = NodeUtil.getNumberValue(n); // Calculating the number value, if any, is likely to be faster than calculating side effects, // and there are only a very few cases where we can compute a number value, but there could // also be side effects. e.g. `void doSomething()` has value NaN, regardless of the behavior // of `doSomething()` if (value != null && astAnalyzer.mayHaveSideEffects(n)) { value = null; } return value; } /** * Gets the value of a node as a String, or {@code null} if it cannot be converted. * *

This method effectively emulates the String() JavaScript cast function when * possible and the node has no side effects. Otherwise, it returns {@code null}. */ protected String getSideEffectFreeStringValue(Node n) { String value = NodeUtil.getStringValue(n); // Calculating the string value, if any, is likely to be faster than calculating side effects, // and there are only a very few cases where we can compute a string value, but there could // also be side effects. e.g. `void doSomething()` has value 'undefined', regardless of the // behavior of `doSomething()` if (value != null && astAnalyzer.mayHaveSideEffects(n)) { value = null; } return value; } /** * Calculate the known boolean value for a node if possible and if it has no side effects. * *

Returns {@link TernaryValue#UNKNOWN} if the node has side effects or its value cannot be * statically determined. */ protected TernaryValue getSideEffectFreeBooleanValue(Node n) { TernaryValue value = NodeUtil.getBooleanValue(n); // Calculating the boolean value, if any, is likely to be faster than calculating side effects, // and there are only a very few cases where we can compute a boolean value, but there could // also be side effects. e.g. `void doSomething()` has value `false`, regardless of the // behavior of `doSomething()` if (value != TernaryValue.UNKNOWN && astAnalyzer.mayHaveSideEffects(n)) { value = TernaryValue.UNKNOWN; } return value; } /** * Returns true if the current node's type implies side effects. * *

This is a non-recursive version of the may have side effects check; used to check wherever * the current node's type is one of the reason's why a subtree has side effects. */ protected boolean nodeTypeMayHaveSideEffects(Node n) { return astAnalyzer.nodeTypeMayHaveSideEffects(n); } /** * Returns whether the output language is ECMAScript 5 or later. Workarounds for quirks in * browsers that do not support ES5 can be ignored when this is true. */ protected boolean isEcmaScript5OrGreater() { return compiler != null && compiler.getOptions().getOutputFeatureSet().contains(FeatureSet.ES5); } /** Returns the current coding convention. */ protected CodingConvention getCodingConvention() { // Note: this assumes a thread safe coding convention object. return compiler.getCodingConvention(); } protected final boolean areDeclaredGlobalExternsOnWindow() { checkNotNull(compiler); return compiler.getOptions().declaredGlobalExternsOnWindow; } protected final void reportChangeToEnclosingScope(Node n) { compiler.reportChangeToEnclosingScope(n); } /** Calls {@link NodeUtil#deleteNode(Node, AbstractCompiler)} */ protected final void deleteNode(Node property) { checkNotNull(compiler); NodeUtil.deleteNode(property, compiler); } /** Calls {@link NodeUtil#markFunctionsDeleted(Node, AbstractCompiler)} */ protected final void markFunctionsDeleted(Node function) { checkNotNull(compiler); NodeUtil.markFunctionsDeleted(function, compiler); } /** Calls {@link NodeUtil#markNewScopesChanged(Node, AbstractCompiler)} */ protected final void markNewScopesChanged(Node n) { checkNotNull(compiler); NodeUtil.markNewScopesChanged(n, compiler); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy