All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.RemoveUnusedCode Maven / Gradle / Ivy

/*
 * Copyright 2008 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.MoreObjects.firstNonNull;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;

import com.google.common.collect.HashMultimap;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Multimap;
import com.google.javascript.jscomp.AccessorSummary.PropertyAccessKind;
import com.google.javascript.jscomp.CodingConvention.SubclassRelationship;
import com.google.javascript.rhino.IR;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.Token;
import com.google.javascript.rhino.jstype.JSType;
import com.google.javascript.rhino.jstype.JSTypeNative;
import com.google.javascript.rhino.jstype.ObjectType;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import javax.annotation.Nullable;

/**
 * Garbage collection for variable and function definitions. Basically performs
 * a mark-and-sweep type algorithm over the JavaScript parse tree.
 *
 * For each scope:
 * (1) Scan the variable/function declarations at that scope.
 * (2) Traverse the scope for references, marking all referenced variables.
 *     Unlike other compiler passes, this is a pre-order traversal, not a
 *     post-order traversal.
 * (3) If the traversal encounters an assign without other side-effects,
 *     create a continuation. Continue the continuation iff the assigned
 *     variable is referenced.
 * (4) When the traversal completes, remove all unreferenced variables.
 *
 * If it makes it easier, you can think of the continuations of the traversal
 * as a reference graph. Each continuation represents a set of edges, where the
 * source node is a known variable, and the destination nodes are lazily
 * evaluated when the continuation is executed.
 *
 * This algorithm is similar to the algorithm used by {@code SmartNameRemoval}.
 * {@code SmartNameRemoval} maintains an explicit graph of dependencies
 * between global symbols. However, {@code SmartNameRemoval} cannot handle
 * non-trivial edges in the reference graph ("A is referenced iff both B and C
 * are referenced"), or local variables. {@code SmartNameRemoval} is also
 * substantially more complicated because it tries to handle namespaces
 * (which is largely unnecessary in the presence of {@code CollapseProperties}.
 *
 * This pass also uses a more complex analysis of assignments, where
 * an assignment to a variable or a property of that variable does not
 * necessarily count as a reference to that variable, unless we can prove
 * that it modifies external state. This is similar to
 * {@code FlowSensitiveInlineVariables}, except that it works for variables
 * used across scopes.
 *
 * Multiple datastructures are used to accumulate nodes, some of which are
 * later removed. Since some nodes encompass a subtree of nodes, the removal
 * can sometimes pre-remove other nodes which are also referenced in these
 * datastructures for later removal. Attempting double-removal violates scope
 * change notification constraints so there is a desire to excise
 * already-removed subtree nodes from these datastructures. But not all of the
 * datastructures are conducive to flexible removal and the ones that are
 * conducive don't necessarily track all flavors of nodes. So instead of
 * updating datastructures on the fly a pre-check is performed to skip
 * already-removed nodes right before the moment an attempt to remove them
 * would otherwise be made.
 */
class RemoveUnusedCode implements CompilerPass {

  // Properties that are implicitly used as part of the JS language.
  private static final ImmutableSet IMPLICITLY_USED_PROPERTIES =
      ImmutableSet.of("length", "toString", "valueOf", "constructor");

  private final AbstractCompiler compiler;
  private final AstAnalyzer astAnalyzer;

  private final CodingConvention codingConvention;

  private final boolean removeLocalVars;
  private final boolean removeGlobals;

  private final boolean preserveFunctionExpressionNames;

  /**
   * Used to hold continuations that need to be invoked.
   *
   * When we find a subtree of the AST that may not need to be traversed, we create a Continuation
   * for it. If we later discover that we do need to traverse it, we add it to this worklist
   * rather than traversing it immediately. If we invoked the traversal immediately, we could
   * end up modifying a data structure in the traversal as we're iterating over it.
   */
  private final Deque worklist = new ArrayDeque<>();

  private final Map varInfoMap = new IdentityHashMap<>();

  private final Set pinnedPropertyNames = new HashSet<>(IMPLICITLY_USED_PROPERTIES);

  /** Stores Removable objects for each property name that is currently considered removable. */
  private final Multimap removablesForPropertyNames = HashMultimap.create();

  /** Single value to use for all vars for which we cannot remove anything at all. */
  private final VarInfo canonicalUnremovableVarInfo;

  /**
   * Keep track of scopes that we've traversed.
   */
  private final List allFunctionParamScopes = new ArrayList<>();

  /**
   * Stores the names of all "leaf" properties that are polyfilled, to avoid unnecessary qualified
   * name matching and searches for all the other properties. This includes global names such as
   * "Promise" and "Map", static methods on global names such as "Array.from" and "Math.fround", and
   * instance properties such as "String.prototype.repeat" and "Promise.prototype.finally".
   */
  private final Multimap polyfills = HashMultimap.create();

  private final SyntacticScopeCreator scopeCreator;

  private final boolean removeUnusedPrototypeProperties;
  private final boolean allowRemovalOfExternProperties;
  private final boolean removeUnusedThisProperties;
  private final boolean removeUnusedObjectDefinePropertiesDefinitions;
  private final boolean removeUnusedPolyfills;
  private final boolean assumeGettersArePure;

  RemoveUnusedCode(Builder builder) {
    this.compiler = builder.compiler;
    this.astAnalyzer = compiler.getAstAnalyzer();
    this.codingConvention = builder.compiler.getCodingConvention();
    this.scopeCreator = new SyntacticScopeCreator(builder.compiler);

    this.removeLocalVars = builder.removeLocalVars;
    this.removeGlobals = builder.removeGlobals;
    this.preserveFunctionExpressionNames = builder.preserveFunctionExpressionNames;
    this.removeUnusedPrototypeProperties = builder.removeUnusedPrototypeProperties;
    this.allowRemovalOfExternProperties = builder.allowRemovalOfExternProperties;
    this.removeUnusedThisProperties = builder.removeUnusedThisProperties;
    this.removeUnusedObjectDefinePropertiesDefinitions =
        builder.removeUnusedObjectDefinePropertiesDefinitions;
    this.removeUnusedPolyfills = builder.removeUnusedPolyfills;
    this.assumeGettersArePure = builder.assumeGettersArePure;

    // All Vars that are completely unremovable will share this VarInfo instance.
    canonicalUnremovableVarInfo = new VarInfo();
    canonicalUnremovableVarInfo.setIsExplicitlyNotRemovable();
  }

  public static class Builder {
    private final AbstractCompiler compiler;

    private boolean removeLocalVars = false;
    private boolean removeGlobals = false;
    private boolean preserveFunctionExpressionNames = false;
    private boolean removeUnusedPrototypeProperties = false;
    private boolean allowRemovalOfExternProperties = false;
    private boolean removeUnusedThisProperties = false;
    private boolean removeUnusedObjectDefinePropertiesDefinitions = false;
    private boolean removeUnusedPolyfills = false;
    private boolean assumeGettersArePure = false;

    Builder(AbstractCompiler compiler) {
      this.compiler = compiler;
    }

    Builder removeLocalVars(boolean value) {
      this.removeLocalVars = value;
      return this;
    }

    Builder removeGlobals(boolean value) {
      this.removeGlobals = value;
      return this;
    }

    Builder preserveFunctionExpressionNames(boolean value) {
      this.preserveFunctionExpressionNames = value;
      return this;
    }

    Builder removeUnusedPrototypeProperties(boolean value) {
      this.removeUnusedPrototypeProperties = value;
      return this;
    }

    Builder allowRemovalOfExternProperties(boolean value) {
      this.allowRemovalOfExternProperties = value;
      return this;
    }

    Builder removeUnusedThisProperties(boolean value) {
      this.removeUnusedThisProperties = value;
      return this;
    }

    Builder removeUnusedObjectDefinePropertiesDefinitions(boolean value) {
      this.removeUnusedObjectDefinePropertiesDefinitions = value;
      return this;
    }

    Builder removeUnusedPolyfills(boolean value) {
      this.removeUnusedPolyfills = value;
      return this;
    }

    Builder assumeGettersArePure(boolean value) {
      this.assumeGettersArePure = value;
      return this;
    }

    RemoveUnusedCode build() {
      return new RemoveUnusedCode(this);
    }
  }

  /**
   * Traverses the root, removing all unused variables. Multiple traversals
   * may occur to ensure all unused variables are removed.
   */
  @Override
  public void process(Node externs, Node root) {
    checkState(compiler.getLifeCycleStage().isNormalized());
    if (!allowRemovalOfExternProperties) {
      pinnedPropertyNames.addAll(compiler.getExternProperties());
    }
    traverseAndRemoveUnusedReferences(root);
  }

  /**
   * Traverses a node recursively. Call this once per pass.
   */
  private void traverseAndRemoveUnusedReferences(Node root) {
    // Create scope from parent of root node, which also has externs as a child, so we'll
    // have extern definitions in scope.
    Scope scope = scopeCreator.createScope(root.getParent(), null);
    if (!scope.hasSlot(NodeUtil.JSC_PROPERTY_NAME_FN)) {
      // TODO(b/70730762): Passes that add references to this should ensure it is declared.
      // NOTE: null input makes this an extern var.
      scope.declare(
          NodeUtil.JSC_PROPERTY_NAME_FN, /* no declaration node */ null, /* no input */ null);
    }
    worklist.add(new Continuation(root, scope));
    while (!worklist.isEmpty()) {
      Continuation continuation = worklist.remove();
      continuation.apply();
    }

    removeUnreferencedVarsAndPolyfills();
    removeIndependentlyRemovableProperties();
    for (Scope fparamScope : allFunctionParamScopes) {
      removeUnreferencedFunctionArgs(fparamScope);
    }
  }

  private void removeIndependentlyRemovableProperties() {
    for (Removable removable : removablesForPropertyNames.values()) {
      removable.remove(compiler);
    }
  }

  /**
   * Traverses everything in the current scope and marks variables that
   * are referenced.
   *
   * During traversal, we identify subtrees that will only be
   * referenced if their enclosing variables are referenced. Instead of
   * traversing those subtrees, we create a continuation for them,
   * and traverse them lazily.
   */
  private void traverseNode(Node n, Scope scope) {
    Node parent = n.getParent();
    Token type = n.getToken();
    switch (type) {
      case CATCH:
        traverseCatch(n, scope);
        break;

      case FUNCTION:
        {
          VarInfo varInfo = null;
          // If this function is a removable var, then create a continuation
          // for it instead of traversing immediately.
          if (NodeUtil.isFunctionDeclaration(n)) {
            varInfo = traverseNameNode(n.getFirstChild(), scope);
            FunctionDeclaration functionDeclaration =
                new RemovableBuilder()
                    .addContinuation(new Continuation(n, scope))
                    .buildFunctionDeclaration(n);
            varInfo.addRemovable(functionDeclaration);
            if (parent.isExport()) {
              varInfo.markAsReferenced();
            }
          } else {
            traverseFunction(n, scope);
          }
        }
        break;

      case ASSIGN:
        traverseAssign(n, scope);
        break;

      case ASSIGN_BITOR:
      case ASSIGN_BITXOR:
      case ASSIGN_BITAND:
      case ASSIGN_LSH:
      case ASSIGN_RSH:
      case ASSIGN_URSH:
      case ASSIGN_ADD:
      case ASSIGN_SUB:
      case ASSIGN_MUL:
      case ASSIGN_EXPONENT:
      case ASSIGN_DIV:
      case ASSIGN_MOD:
        traverseCompoundAssign(n, scope);
        break;

      case INC:
      case DEC:
        traverseIncrementOrDecrementOp(n, scope);
        break;

      case CALL:
        traverseCall(n, scope);
        break;

      case SWITCH:
      case BLOCK:
        // This case if for if there are let and const variables in block scopes.
        // Otherwise other variables will be hoisted up into the global scope and already be
        // handled.
        traverseChildren(
            n, NodeUtil.createsBlockScope(n) ? scopeCreator.createScope(n, scope) : scope);
        break;

      case MODULE_BODY:
        traverseChildren(n, scopeCreator.createScope(n, scope));
        break;

      case CLASS:
        traverseClass(n, scope);
        break;

      case CLASS_MEMBERS:
        traverseClassMembers(n, scope);
        break;

      case ARRAY_PATTERN:
      case PARAM_LIST:
        traverseIndirectAssignmentList(n, scope);
        break;

      case OBJECT_PATTERN:
        traverseObjectPattern(n, scope);
        break;

      case OBJECTLIT:
        traverseObjectLiteral(n, scope);
        break;

      case FOR:
        traverseVanillaFor(n, scope);
        break;

      case FOR_IN:
      case FOR_OF:
      case FOR_AWAIT_OF:
        traverseEnhancedFor(n, scope);
        break;

      case LET:
      case CONST:
      case VAR:
        // for-loop cases are handled by custom traversal methods.
        checkState(NodeUtil.isStatement(n));
        traverseDeclarationStatement(n, scope);
        break;

      case INSTANCEOF:
        traverseInstanceof(n, scope);
        break;

      case NAME:
        // The only cases that should reach this point are parameter declarations and references
        // to names. The name node does not have children in these cases.
        checkState(!n.hasChildren());
        // the parameter declaration is not a read of the name
        if (!parent.isParamList()) {
          // var|let|const name;
          // are handled at a higher level.
          checkState(!NodeUtil.isNameDeclaration(parent));
          // function name() {}
          // class name() {}
          // handled at a higher level
          checkState(!((parent.isFunction() || parent.isClass()) && parent.getFirstChild() == n));
          traverseNameNode(n, scope).markAsReferenced();
        }
        break;

      case GETPROP:
        traverseGetProp(n, scope);
        break;

      default:
        traverseChildren(n, scope);
        break;
    }
  }

  private void traverseInstanceof(Node instanceofNode, Scope scope) {
    checkArgument(instanceofNode.isInstanceOf(), instanceofNode);
    Node lhs = instanceofNode.getFirstChild();
    Node rhs = lhs.getNext();
    traverseNode(lhs, scope);
    if (rhs.isName()) {
      VarInfo varInfo = traverseNameNode(rhs, scope);
      RemovableBuilder builder = new RemovableBuilder();
      varInfo.addRemovable(builder.buildInstanceofName(instanceofNode));
    } else {
      traverseNode(rhs, scope);
    }
  }

  private void traverseGetProp(Node getProp, Scope scope) {
    Node objectNode = getProp.getFirstChild();
    Node propertyNameNode = objectNode.getNext();
    String propertyName = propertyNameNode.getString();

    if (polyfills.containsKey(propertyName)) {
      for (PolyfillInfo info : polyfills.get(propertyName)) {
        info.considerPossibleReference(getProp);
      }
    }

    if (NodeUtil.isExpressionResultUsed(getProp)
        || considerForAccessorSideEffects(getProp, PropertyAccessKind.GETTER_ONLY)) {
      // must record as reference to the property and continue traversal.
      markPropertyNameAsPinned(propertyName);
      traverseNode(objectNode, scope);
    } else if (objectNode.isThis()) {
      // this.propName;
      RemovableBuilder builder = new RemovableBuilder().setIsThisDotPropertyReference(true);
      considerForIndependentRemoval(builder.buildUnusedReadReference(getProp, propertyNameNode));
    } else if (isDotPrototype(objectNode)) {
      // (objExpression).prototype.propName;
      RemovableBuilder builder = new RemovableBuilder().setIsPrototypeDotPropertyReference(true);
      Node objExpression = objectNode.getFirstChild();
      if (objExpression.isName()) {
        // name.prototype.propName;
        VarInfo varInfo = traverseNameNode(objExpression, scope);
        varInfo.addRemovable(builder.buildUnusedReadReference(getProp, propertyNameNode));
      } else {
        // (objExpression).prototype.propName;
        if (astAnalyzer.mayHaveSideEffects(objExpression)) {
          traverseNode(objExpression, scope);
        } else {
          builder.addContinuation(new Continuation(objExpression, scope));
        }
        considerForIndependentRemoval(builder.buildUnusedReadReference(getProp, propertyNameNode));
      }
    } else {
      // TODO(bradfordcsmith): add removal of `varName.propName;`
      markPropertyNameAsPinned(propertyName);
      traverseNode(objectNode, scope);
    }
  }

  // TODO(b/137380742): Combine with `traverseCompoundAssign`.
  private void traverseIncrementOrDecrementOp(Node incOrDecOp, Scope scope) {
    checkArgument(incOrDecOp.isInc() || incOrDecOp.isDec(), incOrDecOp);
    Node arg = incOrDecOp.getOnlyChild();
    if (NodeUtil.isExpressionResultUsed(incOrDecOp)) {
      // If expression result is used, then this expression is definitely not removable.
      traverseNode(arg, scope);
    } else if (arg.isGetProp()) {
      Node getPropObj = arg.getFirstChild();
      Node propertyNameNode = arg.getLastChild();

      if (considerForAccessorSideEffects(arg, PropertyAccessKind.GETTER_AND_SETTER)) {
        traverseNode(getPropObj, scope); // Don't re-traverse the GETPROP as a read.
      } else if (getPropObj.isThis()) {
        // this.propName++
        RemovableBuilder builder = new RemovableBuilder().setIsThisDotPropertyReference(true);
        considerForIndependentRemoval(builder.buildIncOrDepOp(incOrDecOp, propertyNameNode, null));
      } else if (isDotPrototype(getPropObj)) {
        // someExpression.prototype.propName++
        Node exprObj = getPropObj.getFirstChild();
        RemovableBuilder builder = new RemovableBuilder().setIsPrototypeDotPropertyReference(true);
        if (exprObj.isName()) {
          // varName.prototype.propName++
          VarInfo varInfo = traverseNameNode(exprObj, scope);
          varInfo.addRemovable(builder.buildIncOrDepOp(incOrDecOp, propertyNameNode, null));
        } else {
          // (someExpression).prototype.propName++
          Node toPreserve = null;
          if (astAnalyzer.mayHaveSideEffects(exprObj)) {
            toPreserve = exprObj;
            traverseNode(exprObj, scope);
          } else {
            builder.addContinuation(new Continuation(exprObj, scope));
          }
          considerForIndependentRemoval(
              builder.buildIncOrDepOp(incOrDecOp, propertyNameNode, toPreserve));
        }
      } else {
        // someExpression.propName++ is not removable except in the cases covered above
        traverseNode(arg, scope);
      }
    } else {
      // TODO(bradfordcsmith): varName++ should be removable if varName is otherwise unused
      traverseNode(arg, scope);
    }
  }

  // TODO(b/137380742): Combine with `traverseIncrementOrDecrement`.
  private void traverseCompoundAssign(Node compoundAssignNode, Scope scope) {
    // We'll allow removal of compound assignment to a `this` property as long as the result of the
    // assignment is unused.
    // e.g. `this.x += 3;`
    // TODO(nickreid): Why do we treat `this` properties specially? It it because `this` is const?
    Node targetNode = compoundAssignNode.getFirstChild();
    Node valueNode = compoundAssignNode.getLastChild();
    if (targetNode.isGetProp()) {
      if (considerForAccessorSideEffects(targetNode, PropertyAccessKind.GETTER_AND_SETTER)) {
        traverseNode(targetNode.getFirstChild(), scope); // Don't re-traverse the GETPROP as a read.
        traverseNode(valueNode, scope);
      } else if (targetNode.getFirstChild().isThis()
          && !NodeUtil.isExpressionResultUsed(compoundAssignNode)) {
      RemovableBuilder builder = new RemovableBuilder().setIsThisDotPropertyReference(true);
      traverseRemovableAssignValue(valueNode, builder, scope);
      considerForIndependentRemoval(
          builder.buildNamedPropertyAssign(compoundAssignNode, targetNode.getLastChild()));
      } else {
        traverseNode(targetNode, scope);
        traverseNode(valueNode, scope);
      }
    } else {
      traverseNode(targetNode, scope);
      traverseNode(valueNode, scope);
    }
  }

  private VarInfo traverseNameNode(Node n, Scope scope) {
    if (polyfills.containsKey(n.getString())) {
      for (PolyfillInfo info : polyfills.get(n.getString())) {
        info.considerPossibleReference(n);
      }
    }

    return traverseVar(getVarForNameNode(n, scope));
  }

  private void traverseCall(Node callNode, Scope scope) {
    Node callee = callNode.getFirstChild();

    if (callee.isQualifiedName()
        && codingConvention.isPropertyRenameFunction(callee.getOriginalQualifiedName())) {
      Node propertyNameNode = checkNotNull(callee.getNext());
      if (propertyNameNode.isString()) {
        markPropertyNameAsPinned(propertyNameNode.getString());
      }
      traverseChildren(callNode, scope);
    } else if (NodeUtil.isObjectDefinePropertiesDefinition(callNode)) {
      // TODO(bradfordcsmith): Should also handle Object.create() and Object.defineProperty().
      traverseObjectDefinePropertiesCall(callNode, scope);
    } else if (removeUnusedPolyfills && isJscompPolyfill(callee)) {
      Node firstArg = callee.getNext();
      String polyfillName = firstArg.getString();
      PolyfillInfo info = createPolyfillInfo(callNode, scope, polyfillName);
      polyfills.put(info.key, info);
      // Only traverse the callee (to mark it as used).  The arguments may be traversed later.
      traverseNode(callNode.getFirstChild(), scope);
    } else {
      Node parent = callNode.getParent();
      String classVarName = null;

      // A call that is a statement unto itself or the left side of a comma expression might be
      // a call to a known method for doing class setup
      // e.g. $jscomp.inherits(Class, BaseClass) or goog.addSingletonGetter(Class)
      // Such methods never have meaningful return values, so we won't look for them in other
      // contexts
      if (parent.isExprResult() || (parent.isComma() && parent.getFirstChild() == callNode)) {
        SubclassRelationship subclassRelationship =
            codingConvention.getClassesDefinedByCall(callNode);
        if (subclassRelationship != null) {
          // e.g. goog.inherits(DerivedClass, BaseClass);
          // NOTE: DerivedClass and BaseClass must be QNames. Otherwise getClassesDefinedByCall()
          // will return null.
          classVarName = subclassRelationship.subclassName;
        } else {
          // Look for calls to addSingletonGetter calls.
          classVarName = codingConvention.getSingletonGetterClassName(callNode);
        }
      }

      Var classVar = null;
      if (classVarName != null && NodeUtil.isValidSimpleName(classVarName)) {
        classVar = checkNotNull(scope.getVar(classVarName), classVarName);
      }

      if (classVar == null || !classVar.isGlobal()) {
        // The call we are traversing does not modify a class definition,
        // or the class is not specified with a simple variable name,
        // or the variable name is not global.
        // TODO(bradfordcsmith): It would be more correct to check whether the class name
        // references a known constructor and expand to allow QNames.
        traverseChildren(callNode, scope);
      } else {
        RemovableBuilder builder = new RemovableBuilder();
        for (Node child = callNode.getFirstChild(); child != null; child = child.getNext()) {
          builder.addContinuation(new Continuation(child, scope));
        }
        traverseVar(classVar).addRemovable(builder.buildClassSetupCall(callNode));
      }
    }
  }

  /** Checks whether this is a recognizable call to $jscomp.polyfill. */
  private static boolean isJscompPolyfill(Node n) {
    switch (n.getToken()) {
      case NAME:
        // Need to work correctly after CollapseProperties.
        return n.getString().equals("$jscomp$polyfill") && n.getNext().isString();
      case GETPROP:
        // Need to work correctly without CollapseProperties.
        return n.getLastChild().getString().equals("polyfill")
            && n.getFirstChild().isName()
            && n.getFirstChild().getString().equals("$jscomp")
            && n.getNext().isString();
      default:
        return false;
    }
  }

  /** Traverse `Object.defineProperties(someObject, propertyDefinitions);`. */
  private void traverseObjectDefinePropertiesCall(Node callNode, Scope scope) {
    // First child is Object.defineProperties or some equivalent of it.
    Node callee = callNode.getFirstChild();
    Node targetObject = callNode.getSecondChild();
    Node propertyDefinitions = targetObject.getNext();

    if ((targetObject.isName() || isNameDotPrototype(targetObject))
        && !NodeUtil.isExpressionResultUsed(callNode)) {
      // NOTE: Object.defineProperties() returns its first argument, so if its return value is used
      // that counts as a use of the targetObject.
      Node nameNode = targetObject.isName() ? targetObject : targetObject.getFirstChild();
      VarInfo varInfo = traverseNameNode(nameNode, scope);
      RemovableBuilder builder = new RemovableBuilder();
      // TODO(bradfordcsmith): Is it really necessary to traverse the callee
      // (aka. Object.defineProperties)?
      builder.addContinuation(new Continuation(callee, scope));
      if (astAnalyzer.mayHaveSideEffects(propertyDefinitions)) {
        traverseNode(propertyDefinitions, scope);
      } else {
        builder.addContinuation(new Continuation(propertyDefinitions, scope));
      }
      varInfo.addRemovable(builder.buildClassSetupCall(callNode));
    } else {
      // TODO(bradfordcsmith): Is it really necessary to traverse the callee
      // (aka. Object.defineProperties)?
      traverseNode(callee, scope);
      traverseNode(targetObject, scope);
      traverseNode(propertyDefinitions, scope);
    }
  }

  /** Traverse the object literal passed as the second argument to `Object.defineProperties()`. */
  private void traverseObjectDefinePropertiesLiteral(Node propertyDefinitions, Scope scope) {
    for (Node property = propertyDefinitions.getFirstChild();
        property != null;
        property = property.getNext()) {
      if (property.isQuotedString()) {
        // Quoted property name counts as a reference to the property and protects it from removal.
        markPropertyNameAsPinned(property.getString());
        traverseNode(property.getOnlyChild(), scope);
      } else if (property.isStringKey()) {
        Node definition = property.getOnlyChild();
        if (astAnalyzer.mayHaveSideEffects(definition)) {
          traverseNode(definition, scope);
        } else {
          considerForIndependentRemoval(
              new RemovableBuilder()
                  .addContinuation(new Continuation(definition, scope))
                  .buildObjectDefinePropertiesDefinition(property));
        }
      } else {
        // TODO(bradfordcsmith): Maybe report error for anything other than a computed property,
        // since getters, setters, and methods don't make much sense in this context.
        traverseNode(property, scope);
      }
    }
  }

  private Var getVarForNameNode(Node nameNode, Scope scope) {
    return checkNotNull(scope.getVar(nameNode.getString()), nameNode);
  }

  private void traverseObjectLiteral(Node objectLiteral, Scope scope) {
    checkArgument(objectLiteral.isObjectLit(), objectLiteral);
    // Is this an object literal that is assigned directly to a 'prototype' property?
    if (isAssignmentToPrototype(objectLiteral.getParent())) {
      traversePrototypeLiteral(objectLiteral, scope);
    } else if (isObjectDefinePropertiesSecondArgument(objectLiteral)) {
      // TODO(bradfordcsmith): Consider restricting special handling of the properties literal to
      // cases where the target object is a known class, prototype, or this.
      traverseObjectDefinePropertiesLiteral(objectLiteral, scope);
    } else {
      traverseNonPrototypeObjectLiteral(objectLiteral, scope);
    }
  }

  private boolean isObjectDefinePropertiesSecondArgument(Node n) {
    Node parent = n.getParent();
    return NodeUtil.isObjectDefinePropertiesDefinition(parent) && parent.getLastChild() == n;
  }

  private void traverseNonPrototypeObjectLiteral(Node objectLiteral, Scope scope) {
    for (Node propertyNode = objectLiteral.getFirstChild();
        propertyNode != null;
        propertyNode = propertyNode.getNext()) {
      if (propertyNode.isStringKey()) {
        // A property name in an object literal counts as a reference,
        // because of some reflection patterns.
        // Note that we are intentionally treating both quoted and unquoted keys as
        // references.
        markPropertyNameAsPinned(propertyNode.getString());
        traverseNode(propertyNode.getFirstChild(), scope);
      } else {
        traverseNode(propertyNode, scope);
      }
    }
  }

  private void traversePrototypeLiteral(Node objectLiteral, Scope scope) {
    for (Node propertyNode = objectLiteral.getFirstChild();
        propertyNode != null;
        propertyNode = propertyNode.getNext()) {
      if (propertyNode.isComputedProp() || propertyNode.isQuotedString()) {
        traverseChildren(propertyNode, scope);
      } else {
        Node valueNode = propertyNode.getOnlyChild();
        if (astAnalyzer.mayHaveSideEffects(valueNode)) {
          // TODO(bradfordcsmith): Ideally we should preserve the side-effect without keeping the
          // property itself alive.
          traverseNode(valueNode, scope);
        } else {
          // If we've come this far, we already know we're keeping the prototype literal itself,
          // but we may be able to remove unreferenced properties in it.
          considerForIndependentRemoval(
              new RemovableBuilder()
                  .addContinuation(new Continuation(valueNode, scope))
                  .buildClassOrPrototypeNamedProperty(propertyNode));
        }
      }
    }
  }

  private boolean isAssignmentToPrototype(Node n) {
    return n.isAssign() && isDotPrototype(n.getFirstChild());
  }

  /** True for `someExpression.prototype`. */
  private static boolean isDotPrototype(Node n) {
    return n.isGetProp() && n.getLastChild().getString().equals("prototype");
  }

  private void traverseCatch(Node catchNode, Scope scope) {
    Node exceptionNameNode = catchNode.getFirstChild();
    Node block = exceptionNameNode.getNext();
    if (exceptionNameNode.isName()) {
      // exceptionNameNode can be an empty node if not using a binding in 2019.
      VarInfo exceptionVarInfo = traverseNameNode(exceptionNameNode, scope);
      exceptionVarInfo.setIsExplicitlyNotRemovable();
    }
    traverseNode(block, scope);
  }

  private void traverseEnhancedFor(Node enhancedFor, Scope scope) {
    Scope forScope = scopeCreator.createScope(enhancedFor, scope);
    // for (iterationTarget in|of collection) body;
    Node iterationTarget = enhancedFor.getFirstChild();
    Node collection = iterationTarget.getNext();
    Node body = collection.getNext();
    if (iterationTarget.isName()) {
      // using previously-declared loop variable. e.g.
      // `for (varName of collection) {}`
      VarInfo varInfo = traverseNameNode(iterationTarget, forScope);
      varInfo.setIsExplicitlyNotRemovable();
    } else if (NodeUtil.isNameDeclaration(iterationTarget)) {
      // loop has const/var/let declaration
      Node declNode = iterationTarget.getOnlyChild();
      if (declNode.isDestructuringLhs()) {
        // e.g.
        // `for (const [a, b] of pairList) {}`
        // destructuring is handled at a lower level
        // Note that destructuring assignments are always considered to set an unknown value
        // equivalent to what we set for the var name case above and below.
        // It isn't necessary to set the variable names as not removable, though, because the
        // thing that isn't removable is the destructuring pattern itself, which we never remove.
        // TODO(bradfordcsmith): The need to explain all the above shows this should be reworked.
        traverseNode(declNode, forScope);
      } else {
        // e.g.
        // `for (const varName of collection) {}`
        checkState(declNode.isName());
        checkState(!declNode.hasChildren());
        // We can never remove the loop variable of a for-in or for-of loop, because it's
        // essential to loop syntax.
        VarInfo varInfo = traverseNameNode(declNode, forScope);
        varInfo.setIsExplicitlyNotRemovable();
      }
    } else {
      // using some general LHS value e.g.
      // `for ([a, b] of collection) {}` destructuring with existing vars
      // `for (a.x of collection) {}` using a property as the loop var
      // TODO(bradfordcsmith): This should be considered a write if it's a property reference.
      traverseNode(iterationTarget, forScope);
    }
    traverseNode(collection, forScope);
    traverseNode(body, forScope);
  }

  private void traverseVanillaFor(Node forNode, Scope scope) {
    Scope forScope = scopeCreator.createScope(forNode, scope);
    Node initialization = forNode.getFirstChild();
    Node condition = initialization.getNext();
    Node update = condition.getNext();
    Node block = update.getNext();
    if (NodeUtil.isNameDeclaration(initialization)) {
      traverseVanillaForNameDeclarations(initialization, forScope);
    } else {
      traverseNode(initialization, forScope);
    }
    traverseNode(condition, forScope);
    traverseNode(update, forScope);
    traverseNode(block, forScope);
  }

  private void traverseVanillaForNameDeclarations(Node nameDeclaration, Scope scope) {
    for (Node child = nameDeclaration.getFirstChild(); child != null; child = child.getNext()) {
      if (!child.isName()) {
        // TODO(bradfordcsmith): Customize handling of destructuring
        traverseNode(child, scope);
      } else {
        Node nameNode = child;
        @Nullable Node valueNode = child.getFirstChild();
        VarInfo varInfo = traverseNameNode(nameNode, scope);
        if (valueNode == null) {
          varInfo.addRemovable(new RemovableBuilder().buildVanillaForNameDeclaration(nameNode));
        } else if (astAnalyzer.mayHaveSideEffects(valueNode)) {
          // TODO(bradfordcsmith): Actually allow for removing the variable while keeping the
          // valueNode for its side-effects.
          varInfo.setIsExplicitlyNotRemovable();
          traverseNode(valueNode, scope);
        } else {
          VanillaForNameDeclaration vanillaForNameDeclaration =
              new RemovableBuilder()
                  .addContinuation(new Continuation(valueNode, scope))
                  .buildVanillaForNameDeclaration(nameNode);
          varInfo.addRemovable(vanillaForNameDeclaration);
        }
      }
    }
  }

  private void traverseDeclarationStatement(Node declarationStatement, Scope scope) {
    // Normalization should ensure that declaration statements always have just one child.
    Node nameNode = declarationStatement.getOnlyChild();
    if (!nameNode.isName()) {
      // Destructuring declarations are handled elsewhere.
      traverseNode(nameNode, scope);
    } else {
      Node valueNode = nameNode.getFirstChild();
      VarInfo varInfo = traverseNameNode(nameNode, scope);
      RemovableBuilder builder = new RemovableBuilder();
      if (valueNode == null) {
        varInfo.addRemovable(builder.buildNameDeclarationStatement(declarationStatement));
      } else {
        if (astAnalyzer.mayHaveSideEffects(valueNode)) {
          traverseNode(valueNode, scope);
        } else {
          builder.addContinuation(new Continuation(valueNode, scope));
        }
        NameDeclarationStatement removable =
            builder.buildNameDeclarationStatement(declarationStatement);
        varInfo.addRemovable(removable);
      }
    }
  }

  private void traverseAssign(Node assignNode, Scope scope) {
    checkState(NodeUtil.isAssignmentOp(assignNode));

    Node lhs = assignNode.getFirstChild();
    Node valueNode = assignNode.getLastChild();
    if (lhs.isName()) {
      // varName = something
      VarInfo varInfo = traverseNameNode(lhs, scope);
      RemovableBuilder builder = new RemovableBuilder();
      traverseRemovableAssignValue(valueNode, builder, scope);
      varInfo.addRemovable(builder.buildVariableAssign(assignNode));
    } else if (lhs.isGetElem()) {
      Node getElemObj = lhs.getFirstChild();
      Node getElemKey = lhs.getLastChild();
      Node varNameNode =
          getElemObj.isName()
              ? getElemObj
              : isNameDotPrototype(getElemObj) ? getElemObj.getFirstChild() : null;

      if (varNameNode != null) {
        // varName[someExpression] = someValue
        // OR
        // varName.prototype[someExpression] = someValue
        VarInfo varInfo = traverseNameNode(varNameNode, scope);
        RemovableBuilder builder = new RemovableBuilder();
        if (astAnalyzer.mayHaveSideEffects(getElemKey)) {
          traverseNode(getElemKey, scope);
        } else {
          builder.addContinuation(new Continuation(getElemKey, scope));
        }
        traverseRemovableAssignValue(valueNode, builder, scope);
        varInfo.addRemovable(builder.buildComputedPropertyAssign(assignNode, getElemKey));
      } else {
        traverseNode(getElemObj, scope);
        traverseNode(getElemKey, scope);
        traverseNode(valueNode, scope);
      }
    } else if (lhs.isGetProp()) {
      Node getPropLhs = lhs.getFirstChild();
      Node propNameNode = lhs.getLastChild();

      if (considerForAccessorSideEffects(lhs, PropertyAccessKind.SETTER_ONLY)) {
        // And the possible side-effects mean we can't do any removal. We don't use the
        // `AstAnalyzer` because we only want to consider side-effect from the assignment, not the
        // entire l-value subtree.
        traverseNode(getPropLhs, scope); // Don't re-traverse the GETPROP as a read.
        traverseNode(valueNode, scope);
      } else if (getPropLhs.isName()) {
        // varName.propertyName = someValue
        VarInfo varInfo = traverseNameNode(getPropLhs, scope);
        RemovableBuilder builder = new RemovableBuilder();
        traverseRemovableAssignValue(valueNode, builder, scope);
        varInfo.addRemovable(builder.buildNamedPropertyAssign(assignNode, propNameNode));
      } else if (isDotPrototype(getPropLhs)) {
        // objExpression.prototype.propertyName = someValue
        Node objExpression = getPropLhs.getFirstChild();
        RemovableBuilder builder = new RemovableBuilder().setIsPrototypeDotPropertyReference(true);
        traverseRemovableAssignValue(valueNode, builder, scope);
        if (objExpression.isName()) {
          // varName.prototype.propertyName = someValue
          VarInfo varInfo = traverseNameNode(getPropLhs.getFirstChild(), scope);
          varInfo.addRemovable(builder.buildNamedPropertyAssign(assignNode, propNameNode));
        } else {
          // (someExpression).prototype.propertyName = someValue
          if (astAnalyzer.mayHaveSideEffects(objExpression)) {
            traverseNode(objExpression, scope);
          } else {
            builder.addContinuation(new Continuation(objExpression, scope));
          }
          considerForIndependentRemoval(
              builder.buildAnonymousPrototypeNamedPropertyAssign(
                  assignNode, propNameNode.getString()));
        }
      } else if (getPropLhs.isThis()) {
        // this.propertyName = someValue
        RemovableBuilder builder = new RemovableBuilder().setIsThisDotPropertyReference(true);
        traverseRemovableAssignValue(valueNode, builder, scope);
        considerForIndependentRemoval(builder.buildNamedPropertyAssign(assignNode, propNameNode));
      } else {
        traverseNode(lhs, scope);
        traverseNode(valueNode, scope);
      }
    } else {
      // no other cases are removable
      traverseNode(lhs, scope);
      traverseNode(valueNode, scope);
    }
  }

  private void traverseRemovableAssignValue(Node valueNode, RemovableBuilder builder, Scope scope) {
    if (astAnalyzer.mayHaveSideEffects(valueNode)
        || NodeUtil.isExpressionResultUsed(valueNode.getParent())) {
      traverseNode(valueNode, scope);
    } else {
      builder.addContinuation(new Continuation(valueNode, scope));
    }
  }

  private boolean isNameDotPrototype(Node n) {
    return n.isGetProp()
        && n.getFirstChild().isName()
        && n.getLastChild().getString().equals("prototype");
  }

  private void traverseObjectPattern(Node pattern, Scope scope) {
    checkState(pattern.isObjectPattern(), pattern);

    for (Node elem = pattern.getFirstChild(); elem != null; elem = elem.getNext()) {
      switch (elem.getToken()) {
        case COMPUTED_PROP:
          traverseIndirectAssignment(elem, elem.getSecondChild(), scope);
          break;

        case STRING_KEY:
          if (!elem.isQuotedString()) {
            markPropertyNameAsPinned(elem.getString());
          }
          traverseIndirectAssignment(elem, elem.getOnlyChild(), scope);
          break;

        case ITER_REST:
        case OBJECT_REST:
          // Recall that the rest target can be any l-value expression
          traverseIndirectAssignment(elem, elem.getOnlyChild(), scope);
          break;

        default:
          throw new IllegalStateException(
              "Unexpected child of " + pattern.getToken() + ": " + elem.toStringTree());
      }
    }
  }

  private void traverseIndirectAssignmentList(Node list, Scope scope) {
    checkState(list.isArrayPattern() || list.isParamList(), list);

    for (Node elem = list.getFirstChild(); elem != null; elem = elem.getNext()) {
      switch (elem.getToken()) {
        case EMPTY:
          break;

        case ARRAY_PATTERN:
        case DEFAULT_VALUE:
        case GETELEM:
        case GETPROP:
        case NAME:
        case OBJECT_PATTERN:
          traverseIndirectAssignment(elem, elem, scope);
          break;

        case ITER_REST:
        case OBJECT_REST:
          traverseIndirectAssignment(elem, elem.getOnlyChild(), scope);
          break;

        default:
          throw new IllegalStateException(
              "Unexpected child of " + list.getToken() + ": " + elem.toStringTree());
      }
    }
  }

  /**
   * Traverse an AST structure representing an assignment operation for which the target and value
   * are far apart.
   *
   * 

Examples include destructurings and function parameters. * * @param root The root of the assignment subtree. * @param target The l-value expression being assigned to. */ private void traverseIndirectAssignment(Node root, Node target, Scope scope) { Node rootParent = root.getParent(); checkArgument(rootParent.isDestructuringPattern() || rootParent.isParamList(), rootParent); // Flatten out the case where the target is a default value. We always have to consider it. if (target.isDefaultValue()) { target = target.getFirstChild(); } if (target.isGetProp()) { considerForAccessorSideEffects(target, PropertyAccessKind.SETTER_ONLY); } RemovableBuilder builder = new RemovableBuilder().addContinuation(new Continuation(root, scope)); if (astAnalyzer.mayHaveSideEffects(root)) { // If anywhere in the assignment subtree has side-effects, it means that even if the target is // removable the subtree is not. traverseNode(root, scope); // TODO(bradfordcsmith): Preserve side effects without preventing removal of variables and // properties. We could probably do this by subbing in an empty object pattern. } else if (target.isName()) { VarInfo varInfo = traverseNameNode(target, scope); varInfo.addRemovable(builder.buildIndirectAssign(root, target)); } else if (isNameDotPrototype(target) || isThisDotProperty(target)) { considerForIndependentRemoval(builder.buildIndirectAssign(root, target)); } else { // TODO(bradfordcsmith): Handle property assignments also // e.g. `({a: foo.bar, b: foo.baz}) = {a: 1, b: 2}` traverseNode(root, scope); } } private void traverseChildren(Node n, Scope scope) { for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { traverseNode(c, scope); } } /** * Handle a class that is not the RHS child of an assignment or a variable declaration * initializer. * *

For * @param classNode * @param scope */ private void traverseClass(Node classNode, Scope scope) { checkArgument(classNode.isClass()); if (NodeUtil.isClassDeclaration(classNode)) { traverseClassDeclaration(classNode, scope); } else { traverseClassExpression(classNode, scope); } } private void traverseClassDeclaration(Node classNode, Scope scope) { checkArgument(classNode.isClass()); Node classNameNode = classNode.getFirstChild(); Node baseClassExpression = classNameNode.getNext(); Node classBodyNode = baseClassExpression.getNext(); Scope classScope = scopeCreator.createScope(classNode, scope); VarInfo varInfo = traverseNameNode(classNameNode, scope); if (classNode.getParent().isExport()) { // Cannot remove an exported class. varInfo.setIsExplicitlyNotRemovable(); traverseNode(baseClassExpression, scope); // Use traverseChildren() here, because we should not consider any properties on the exported // class to be removable. traverseChildren(classBodyNode, classScope); } else if (astAnalyzer.mayHaveSideEffects(baseClassExpression)) { // TODO(bradfordcsmith): implement removal without losing side-effects for this case varInfo.setIsExplicitlyNotRemovable(); traverseNode(baseClassExpression, scope); traverseClassMembers(classBodyNode, classScope); } else { RemovableBuilder builder = new RemovableBuilder() .addContinuation(new Continuation(baseClassExpression, classScope)) .addContinuation(new Continuation(classBodyNode, classScope)); varInfo.addRemovable(builder.buildClassDeclaration(classNode)); } } private void traverseClassExpression(Node classNode, Scope scope) { checkArgument(classNode.isClass()); Node classNameNode = classNode.getFirstChild(); Node baseClassExpression = classNameNode.getNext(); Node classBodyNode = baseClassExpression.getNext(); Scope classScope = scopeCreator.createScope(classNode, scope); if (classNameNode.isName()) { // We may be able to remove the name node if nothing ends up referring to it. VarInfo varInfo = traverseNameNode(classNameNode, classScope); varInfo.addRemovable(new RemovableBuilder().buildNamedClassExpression(classNode)); } // If we're traversing the class expression, we've already decided we cannot remove it. traverseNode(baseClassExpression, scope); traverseClassMembers(classBodyNode, classScope); } private void traverseClassMembers(Node node, Scope scope) { checkArgument(node.isClassMembers(), node); if (!removeUnusedPrototypeProperties) { traverseChildren(node, scope); return; } for (Node member = node.getFirstChild(); member != null; member = member.getNext()) { switch (member.getToken()) { case GETTER_DEF: case SETTER_DEF: case MEMBER_FUNCTION_DEF: // If we get as far as traversing the members of a class, we've already decided that // we cannot remove the class itself, so just consider individual members for removal. considerForIndependentRemoval( new RemovableBuilder() .addContinuation(new Continuation(member, scope)) .buildClassOrPrototypeNamedProperty(member)); break; case COMPUTED_PROP: traverseChildren(member, scope); break; default: throw new IllegalStateException( "Unexpected child of CLASS_MEMBERS: " + member.toStringTree()); } } } /** * Traverses a function * * ES6 scopes of a function include the parameter scope and the body scope * of the function. * * Note that CATCH blocks also create a new scope, but only for the * catch variable. Declarations within the block actually belong to the * enclosing scope. Because we don't remove catch variables, there's * no need to treat CATCH blocks differently like we do functions. */ private void traverseFunction(Node function, Scope parentScope) { checkState(function.hasXChildren(3), function); checkState(function.isFunction(), function); final Node paramlist = NodeUtil.getFunctionParameters(function); final Node body = function.getLastChild(); checkState(body.getNext() == null && body.isBlock(), body); // Checking the parameters Scope fparamScope = scopeCreator.createScope(function, parentScope); // Checking the function body Scope fbodyScope = scopeCreator.createScope(body, fparamScope); Node nameNode = function.getFirstChild(); if (!nameNode.getString().isEmpty()) { // var x = function funcName() {}; // make sure funcName gets into the varInfoMap so it will be considered for removal. VarInfo varInfo = traverseNameNode(nameNode, fparamScope); if (NodeUtil.isExpressionResultUsed(function)) { // var f = function g() {}; // The f is an alias for g, so g escapes from the scope where it is defined. varInfo.hasNonLocalOrNonLiteralValue = true; } } traverseNode(paramlist, fparamScope); traverseChildren(body, fbodyScope); allFunctionParamScopes.add(fparamScope); } private boolean canRemoveParameters(Node parameterList) { checkState(parameterList.isParamList()); Node function = parameterList.getParent(); return removeGlobals && !NodeUtil.isGetOrSetKey(function.getParent()); } /** * Removes unreferenced arguments from a function declaration and when * possible the function's callSites. * * @param fparamScope The function parameter */ private void removeUnreferencedFunctionArgs(Scope fparamScope) { // Notice that removing unreferenced function args breaks // Function.prototype.length. In advanced mode, we don't really care // about this: we consider "length" the equivalent of reflecting on // the function's lexical source. // // Rather than create a new option for this, we assume that if the user // is removing globals, then it's OK to remove unused function args. // // See http://blickly.github.io/closure-compiler-issues/#253 if (!removeGlobals) { return; } Node function = fparamScope.getRootNode(); checkState(function.isFunction()); if (NodeUtil.isGetOrSetKey(function.getParent())) { // The parameters object literal setters can not be removed. return; } Node argList = NodeUtil.getFunctionParameters(function); // Strip as many unreferenced args off the end of the function declaration as possible. maybeRemoveUnusedTrailingParameters(argList, fparamScope); // Mark any remaining unused parameters are unused to OptimizeParameters can try to remove // them. markUnusedParameters(argList, fparamScope); } private void markPropertyNameAsPinned(String propertyName) { if (pinnedPropertyNames.add(propertyName)) { // Continue traversal of all of the property name's values and no longer consider them for // removal. for (Removable removable : removablesForPropertyNames.removeAll(propertyName)) { removable.applyContinuations(); } } } private void considerForIndependentRemoval(Removable removable) { if (removable.isNamedProperty()) { String propertyName = removable.getPropertyName(); if (pinnedPropertyNames.contains(propertyName) || codingConvention.isExported(propertyName)) { // Referenced or exported, so not removable. removable.applyContinuations(); } else if (isIndependentlyRemovable(removable)) { // Store for possible removal later. removablesForPropertyNames.put(propertyName, removable); } else { removable.applyContinuations(); // This assignment counts as a reference, since we won't be removing it. // This is necessary in order to preserve getters and setters for the property. markPropertyNameAsPinned(propertyName); } } else { removable.applyContinuations(); } } /** @return Whether or not accessor side-effect are a possibility. */ private boolean considerForAccessorSideEffects(Node getprop, PropertyAccessKind usage) { checkState(getprop.isGetProp(), getprop); // Other node types may make sense in the future. String propName = getprop.getSecondChild().getString(); PropertyAccessKind recorded = compiler.getAccessorSummary().getKind(propName); if ((recorded.hasGetter() && usage.hasGetter() && !assumeGettersArePure) || (recorded.hasSetter() && usage.hasSetter())) { markPropertyNameAsPinned(propName); return true; } return false; } private boolean isIndependentlyRemovable(Removable removable) { return (removeUnusedPrototypeProperties && removable.isPrototypeProperty()) // TODO(b/139319709): Combine these with "removeUnusedPrototypeProperties". The fact that // only these two property type are conflated is arbitrary. || (removeUnusedThisProperties && (removable.isThisDotPropertyReference() || removable.isStaticProperty())) || (removeUnusedObjectDefinePropertiesDefinitions && removable.isObjectDefinePropertiesDefinition()); } /** * Mark any remaining unused parameters as being unused so it can be used elsewhere. * * @param paramList list of function's parameters * @param fparamScope */ private void markUnusedParameters(Node paramList, Scope fparamScope) { for (Node param = paramList.getFirstChild(); param != null; param = param.getNext()) { if (param.isUnusedParameter()) { continue; } Node lValue = nameOfParam(param); if (lValue == null) { continue; } VarInfo varInfo = traverseNameNode(lValue, fparamScope); if (varInfo.isRemovable()) { param.setUnusedParameter(true); compiler.reportChangeToEnclosingScope(paramList); } } } /** * Strip as many unreferenced args off the end of the function declaration as possible. We start * from the end of the function declaration because removing parameters from the middle of the * param list could mess up the interpretation of parameters being sent over by any function * calls. * * @param argList list of function's arguments * @param fparamScope */ private void maybeRemoveUnusedTrailingParameters(Node argList, Scope fparamScope) { Node lastArg; while ((lastArg = argList.getLastChild()) != null) { Node lValue = lastArg; if (lastArg.isDefaultValue()) { lValue = lastArg.getFirstChild(); if (astAnalyzer.mayHaveSideEffects(lastArg.getLastChild())) { break; } } if (lValue.isRest()) { lValue = lValue.getFirstChild(); } if (lValue.isDestructuringPattern()) { if (lValue.hasChildren()) { // TODO(johnlenz): handle the case where there are no assignments. break; } else { // Remove empty destructuring patterns and their associated object literal assignment // if it exists and if the right hand side does not have side effects. Note, a // destructuring pattern with a "leftover" property key as in {a:{}} is not considered // empty in this case! NodeUtil.deleteNode(lastArg, compiler); continue; } } VarInfo varInfo = getVarInfo(getVarForNameNode(lValue, fparamScope)); if (varInfo.isRemovable()) { NodeUtil.deleteNode(lastArg, compiler); } else { break; } } } /** * Handles a variable reference seen during traversal and returns a {@link VarInfo} object * appropriate for the given {@link Var}. * *

This is a wrapper for {@link #getVarInfo} that handles additional logic needed when we're * getting the {@link VarInfo} during traversal. */ private VarInfo traverseVar(Var var) { checkNotNull(var); if (removeLocalVars && var.isArguments()) { // If we are considering removing local variables, that includes parameters. // If `arguments` is used in a function we must consider all parameters to be referenced. Scope functionScope = var.getScope().getClosestHoistScope(); Node paramList = NodeUtil.getFunctionParameters(functionScope.getRootNode()); for (Node param = paramList.getFirstChild(); param != null; param = param.getNext()) { Node lValue = nameOfParam(param); if (lValue == null) { continue; } getVarInfo(getVarForNameNode(lValue, functionScope)).markAsReferenced(); } // `arguments` is never removable. return canonicalUnremovableVarInfo; } else { return getVarInfo(var); } } /** * Return the NAME node associated with a function parameter (the child of a PARAM_LIST), or null * if there is no single name. */ @Nullable private static Node nameOfParam(Node param) { switch (param.getToken()) { case NAME: return param; case DEFAULT_VALUE: return nameOfParam(param.getFirstChild()); case ITER_REST: return nameOfParam(param.getOnlyChild()); case ARRAY_PATTERN: case OBJECT_PATTERN: return null; default: throw new IllegalStateException("Unexpected child of PARAM_LIST: " + param.toStringTree()); } } /** * Get the right {@link VarInfo} object to use for the given {@link Var}. * *

This method is responsible for managing the entries in {@link #varInfoMap}. *

Note: Several {@link Var}s may share the same {@link VarInfo} when they should be treated * the same way. */ private VarInfo getVarInfo(Var var) { checkNotNull(var); boolean isGlobal = var.isGlobal(); if (var.isExtern()) { return canonicalUnremovableVarInfo; } else if (isGlobal && !removeGlobals) { return canonicalUnremovableVarInfo; } else if (!isGlobal && !removeLocalVars) { return canonicalUnremovableVarInfo; } else if (codingConvention.isExported(var.getName(), !isGlobal)) { return canonicalUnremovableVarInfo; } else if (var.isArguments()) { return canonicalUnremovableVarInfo; } else { VarInfo varInfo = varInfoMap.get(var); if (varInfo == null) { varInfo = new VarInfo(); if (var.getParentNode().isParamList()) { varInfo.hasNonLocalOrNonLiteralValue = true; } varInfoMap.put(var, varInfo); } return varInfo; } } /** * Removes any vars in the scope that were not referenced. Removes any assignments to those * variables as well. */ private void removeUnreferencedVarsAndPolyfills() { for (Entry entry : varInfoMap.entrySet()) { Var var = entry.getKey(); VarInfo varInfo = entry.getValue(); if (!varInfo.isRemovable()) { continue; } // Regardless of what happens to the original declaration, // we need to remove all assigns, because they may contain references // to other unreferenced variables. varInfo.removeAllRemovables(); Node nameNode = var.nameNode; Node toRemove = nameNode.getParent(); if (toRemove == null || alreadyRemoved(toRemove)) { // assignedVarInfo.removeAllRemovables () already removed it } else if (NodeUtil.isFunctionExpression(toRemove)) { // TODO(bradfordcsmith): Add a Removable for this case. if (!preserveFunctionExpressionNames) { Node fnNameNode = toRemove.getFirstChild(); compiler.reportChangeToEnclosingScope(fnNameNode); fnNameNode.setString(""); } } else { // Removables are not created for theses cases. // function foo(unused1 = someSideEffectingValue, ...unused2) {} // removeUnreferencedFunctionArgs() is responsible for removing these. // TODO(bradfordcsmith): handle parameter declarations with removables checkState( toRemove.isParamList() || (toRemove.getParent().isParamList() && (toRemove.isDefaultValue() || toRemove.isRest())), "unremoved code: %s", toRemove); } } Iterator iter = polyfills.values().iterator(); while (iter.hasNext()) { PolyfillInfo polyfill = iter.next(); if (polyfill.isRemovable) { polyfill.removable.remove(compiler); iter.remove(); } } } /** * Our progress in a traversal can be expressed completely as the * current node and scope. The continuation lets us save that * information so that we can continue the traversal later. */ private class Continuation { private final Node node; private final Scope scope; Continuation(Node node, Scope scope) { this.node = node; this.scope = scope; } void apply() { if (node.isFunction()) { // Calling traverseNode here would create infinite recursion for a function declaration traverseFunction(node, scope); } else { traverseNode(node, scope); } } } /** Represents a portion of the AST that can be removed. */ private abstract class Removable { private final List continuations; @Nullable private final String propertyName; private final boolean isPrototypeDotPropertyReference; private final boolean isThisDotPropertyReference; private boolean continuationsAreApplied = false; private boolean isRemoved = false; Removable(RemovableBuilder builder) { continuations = builder.continuations; propertyName = builder.propertyName; isPrototypeDotPropertyReference = builder.isPrototypeDotPropertyReference; isThisDotPropertyReference = builder.isThisDotPropertyReference; } String getPropertyName() { return checkNotNull(propertyName); } /** Remove the associated nodes from the AST. */ abstract void removeInternal(AbstractCompiler compiler); /** Remove the associated nodes from the AST, unless they've already been removed. */ void remove(AbstractCompiler compiler) { if (!isRemoved) { isRemoved = true; removeInternal(compiler); } } public void applyContinuations() { if (!continuationsAreApplied) { continuationsAreApplied = true; for (Continuation c : continuations) { // Enqueue the continuation for processing. // Don't invoke the continuation immediately, because that can lead to concurrent // modification of data structures. worklist.add(c); } continuations.clear(); } } /** True if this object represents assignment to a variable. */ boolean isVariableAssignment() { return false; } /** True if this object represents a named property, either assignment or declaration. */ boolean isNamedProperty() { return propertyName != null; } /** * True if this object represents assignment to a named property. * *

This does not include class or object literal member declarations. */ boolean isNamedPropertyAssignment() { return false; } boolean isAssignedValueLocal() { return false; // assume non-local by default } /** Is this a direct assignment to `varName.prototype`? */ boolean isPrototypeAssignment() { return isNamedPropertyAssignment() && propertyName.equals("prototype"); } /** Is this an assignment to a property on a prototype object? */ boolean isPrototypeDotPropertyReference() { return isPrototypeDotPropertyReference; } boolean isClassOrPrototypeNamedProperty() { return false; } boolean isPrototypeProperty() { return isPrototypeDotPropertyReference() || isClassOrPrototypeNamedProperty(); } boolean isThisDotPropertyReference() { return isThisDotPropertyReference; } public boolean isObjectDefinePropertiesDefinition() { return false; } // TODO(b/134610338): Combine this method with `isPrototypeProperty`. public boolean isStaticProperty() { return false; } /** * Would a nonlocal or nonliteral value prevent removal of a variable associated with this * {@link Removable}? * *

True if the nature of this removable is such that a variable associated with it must not * be removed if its value or its prototype is not a local, literal value. * *

e.g. When X or X.prototype is nonlocal and / or nonliteral we don't know whether it is * safe to remove code like this. * *


     *   X.propName = something; // Don't know the effect of setting X.propName
     *   use(something instanceof X); // can't be certain there are no instances of X
     * 
*/ public boolean preventsRemovalOfVariableWithNonLocalValueOrPrototype() { return false; } } private class RemovableBuilder { final List continuations = new ArrayList<>(); @Nullable String propertyName = null; boolean isPrototypeDotPropertyReference = false; boolean isThisDotPropertyReference = false; RemovableBuilder addContinuation(Continuation continuation) { continuations.add(continuation); return this; } RemovableBuilder setIsPrototypeDotPropertyReference(boolean value) { this.isPrototypeDotPropertyReference = value; return this; } RemovableBuilder setIsThisDotPropertyReference(boolean value) { this.isThisDotPropertyReference = value; return this; } IndirectAssign buildIndirectAssign(Node root, Node targetNode) { return new IndirectAssign(this, root, targetNode); } Polyfill buildPolyfill(Node polyfillNode) { return new Polyfill(this, polyfillNode); } ClassDeclaration buildClassDeclaration(Node classNode) { return new ClassDeclaration(this, classNode); } NamedClassExpression buildNamedClassExpression(Node classNode) { return new NamedClassExpression(this, classNode); } ClassOrPrototypeNamedProperty buildClassOrPrototypeNamedProperty(Node propertyNode) { checkArgument( propertyNode.isMemberFunctionDef() || NodeUtil.isGetOrSetKey(propertyNode) || (propertyNode.isStringKey() && !propertyNode.isQuotedString()), propertyNode); this.propertyName = propertyNode.getString(); return new ClassOrPrototypeNamedProperty(this, propertyNode); } ObjectDefinePropertiesDefinition buildObjectDefinePropertiesDefinition(Node propertyNode) { this.propertyName = propertyNode.getString(); return new ObjectDefinePropertiesDefinition(this, propertyNode); } FunctionDeclaration buildFunctionDeclaration(Node functionNode) { return new FunctionDeclaration(this, functionNode); } NameDeclarationStatement buildNameDeclarationStatement(Node declarationStatement) { return new NameDeclarationStatement(this, declarationStatement); } Assign buildNamedPropertyAssign(Node assignNode, Node propertyNode) { this.propertyName = propertyNode.getString(); return new Assign(this, assignNode, Kind.NAMED_PROPERTY, propertyNode); } Assign buildComputedPropertyAssign(Node assignNode, Node propertyNode) { return new Assign(this, assignNode, Kind.COMPUTED_PROPERTY, propertyNode); } Assign buildVariableAssign(Node assignNode) { return new Assign(this, assignNode, Kind.VARIABLE, /* propertyNode */ null); } ClassSetupCall buildClassSetupCall(Node callNode) { return new ClassSetupCall(this, callNode); } VanillaForNameDeclaration buildVanillaForNameDeclaration(Node nameNode) { return new VanillaForNameDeclaration(this, nameNode); } AnonymousPrototypeNamedPropertyAssign buildAnonymousPrototypeNamedPropertyAssign( Node assignNode, String propertyName) { this.propertyName = propertyName; return new AnonymousPrototypeNamedPropertyAssign(this, assignNode); } IncOrDecOp buildIncOrDepOp(Node incOrDecOp, Node propertyNode, @Nullable Node toPreseve) { this.propertyName = propertyNode.getString(); return new IncOrDecOp(this, incOrDecOp, toPreseve); } UnusedReadReference buildUnusedReadReference(Node referenceNode, Node propertyNode) { this.propertyName = propertyNode.getString(); return new UnusedReadReference(this, referenceNode); } public Removable buildInstanceofName(Node instanceofNode) { return new InstanceofName(this, instanceofNode); } } /** Represents a read reference whose value is not used. */ private class UnusedReadReference extends Removable { final Node referenceNode; UnusedReadReference(RemovableBuilder builder, Node referenceNode) { super(builder); // TODO(bradfordcsmith): handle `name;` and `name.property;` references checkState( isThisDotProperty(referenceNode) || isDotPrototypeDotProperty(referenceNode), referenceNode); this.referenceNode = referenceNode; } @Override void removeInternal(AbstractCompiler compiler) { if (!alreadyRemoved(referenceNode)) { if (isThisDotProperty(referenceNode)) { removeExpressionCompletely(referenceNode); } else { checkState(isDotPrototypeDotProperty(referenceNode), referenceNode); // objExpression.prototype.propertyName Node objExpression = referenceNode.getFirstFirstChild(); if (astAnalyzer.mayHaveSideEffects(objExpression)) { replaceNodeWith(referenceNode, objExpression.detach()); } else { removeExpressionCompletely(referenceNode); } } } } @Override public String toString() { return "UnusedReadReference:" + referenceNode; } } /** * Represents `something instanceof varName`. * *

If `varName` is removed, this expression can be replaced with `false` or * `(something, false)` to preserve side effects. */ private class InstanceofName extends Removable { final Node instanceofNode; InstanceofName(RemovableBuilder builder, Node instanceofNode) { super(builder); checkArgument(instanceofNode.isInstanceOf(), instanceofNode); this.instanceofNode = instanceofNode; } @Override void removeInternal(AbstractCompiler compiler) { if (!alreadyRemoved(instanceofNode)) { Node lhs = instanceofNode.getFirstChild(); Node falseNode = IR.falseNode().srcref(instanceofNode); if (astAnalyzer.mayHaveSideEffects(lhs)) { replaceNodeWith(instanceofNode, IR.comma(lhs.detach(), falseNode).srcref(instanceofNode)); } else { replaceNodeWith(instanceofNode, falseNode); } } } @Override public boolean preventsRemovalOfVariableWithNonLocalValueOrPrototype() { // If we aren't sure where X comes from and what aliases it might have, we cannot be sure // there are no instances of it. return true; } @Override public String toString() { return "InstanceofName:" + instanceofNode; } } /** Represents an increment or decrement operation that could be removed. */ private class IncOrDecOp extends Removable { final Node incOrDecNode; @Nullable final Node toPreserve; IncOrDecOp(RemovableBuilder builder, Node incOrDecNode, @Nullable Node toPreserve) { super(builder); checkArgument(incOrDecNode.isInc() || incOrDecNode.isDec(), incOrDecNode); Node arg = incOrDecNode.getOnlyChild(); // TODO(bradfordcsmith): handle `name;` and `name.property;` references checkState(isThisDotProperty(arg) || isDotPrototypeDotProperty(arg), arg); this.incOrDecNode = incOrDecNode; this.toPreserve = toPreserve; } @Override void removeInternal(AbstractCompiler compiler) { if (alreadyRemoved(incOrDecNode)) { return; } Node arg = incOrDecNode.getOnlyChild(); checkState(arg.isGetProp(), arg); if (this.toPreserve == null) { removeExpressionCompletely(incOrDecNode); } else { replaceNodeWith(incOrDecNode, toPreserve.detach()); } } @Override public String toString() { return "IncOrDecOp:" + incOrDecNode; } } /** True for `this.propertyName` */ private static boolean isThisDotProperty(Node n) { return n.isGetProp() && n.getFirstChild().isThis(); } /** True for `(something).prototype.propertyName` */ private static boolean isDotPrototypeDotProperty(Node n) { return n.isGetProp() && isDotPrototype(n.getFirstChild()); } private class IndirectAssign extends Removable { /** The subtree which can be removed if the assignment is removable. */ final Node root; /** The l-value expression below root. */ final Node targetNode; IndirectAssign(RemovableBuilder builder, Node root, Node targetNode) { super(builder); Node rootParent = root.getParent(); checkState(rootParent.isDestructuringPattern() || rootParent.isParamList(), rootParent); checkState(targetNode.isName() || targetNode.isGetProp(), targetNode); this.root = root; this.targetNode = targetNode; } @Override boolean isVariableAssignment() { return targetNode.isName(); } @Override boolean isThisDotPropertyReference() { return isThisDotProperty(targetNode); } @Override boolean isNamedProperty() { return targetNode.isGetProp(); } @Override public boolean preventsRemovalOfVariableWithNonLocalValueOrPrototype() { if (targetNode.isGetProp()) { Node getPropLhs = targetNode.getFirstChild(); // assignment to varName.property or varName.prototype.property // cannot be removed unless varName and varName.prototype have literal, local values. return getPropLhs.isName() || isNameDotPrototype(getPropLhs); } else { return false; } } @Override boolean isNamedPropertyAssignment() { return targetNode.isGetProp(); } @Override String getPropertyName() { checkState(targetNode.isGetProp(), targetNode); return targetNode.getLastChild().getString(); } @Override public void removeInternal(AbstractCompiler compiler) { if (!alreadyRemoved(targetNode)) { removeRoot(); } } private void removeRoot() { Node rootParent = root.getParent(); switch (rootParent.getToken()) { case ARRAY_PATTERN: // [a, root, b] = something; // [a, root] = something; // Replace root with an empty node to avoid messing up the order of patterns, // then clean up trailing empties. replaceNodeWith(root, IR.empty().srcref(root)); // We prefer `[a, b]` to `[a, b, , , , ]` // So remove any trailing empty nodes. for (Node maybeEmpty = rootParent.getLastChild(); maybeEmpty != null && maybeEmpty.isEmpty(); maybeEmpty = rootParent.getLastChild()) { maybeEmpty.detach(); } compiler.reportChangeToEnclosingScope(rootParent); // TODO(bradfordcsmith): If the array pattern is now empty, try to remove it entirely. break; case PARAM_LIST: if (!root.isDefaultValue()) { // removeUnreferencedFunctionArgs() is responsible for removal of function parameter // positions, so all we can do here is remove the default value. // NOTE: traverseRest() avoids creating a removable for a rest parameter. // TODO(bradfordcsmith): Handle parameter removal consistently with other removals. return; } // function(removableName = removableValue) compiler.reportChangeToEnclosingScope(rootParent); // preserve the slot in the parameter list Node name = root.getFirstChild(); checkState(name.isName()); if (root == rootParent.getLastChild() && removeGlobals && canRemoveParameters(rootParent)) { // function(p1, removableName = removableDefault) // and we're allowed to remove the parameter entirely root.detach(); } else { // function(removableName = removableDefault, otherParam) // or removableName is at the end, but cannot be completely removed. root.replaceWith(name.detach()); } NodeUtil.markFunctionsDeleted(root, compiler); break; case OBJECT_PATTERN: // ({ [propExpression]: root } = something) // becomes // ({} = something) NodeUtil.deleteNode(root, compiler); break; default: throw new IllegalStateException( "Unexpected parent of indirect assignment: " + rootParent.toStringTree()); } } } /** A call to $jscomp.polyfill that can be removed if it is no longer referenced. */ private class Polyfill extends Removable { final Node polyfillNode; Polyfill(RemovableBuilder builder, Node polyfillNode) { super(builder); this.polyfillNode = polyfillNode; } @Override public void removeInternal(AbstractCompiler compiler) { NodeUtil.deleteNode(polyfillNode, compiler); } @Override public String toString() { return "Polyfill:" + polyfillNode; } } private class ClassDeclaration extends Removable { final Node classDeclarationNode; ClassDeclaration(RemovableBuilder builder, Node classDeclarationNode) { super(builder); this.classDeclarationNode = classDeclarationNode; } @Override public void removeInternal(AbstractCompiler compiler) { NodeUtil.deleteNode(classDeclarationNode, compiler); } @Override public String toString() { return "ClassDeclaration:" + classDeclarationNode; } } private class NamedClassExpression extends Removable { final Node classNode; NamedClassExpression(RemovableBuilder builder, Node classNode) { super(builder); this.classNode = classNode; } @Override public void removeInternal(AbstractCompiler compiler) { if (!alreadyRemoved(classNode)) { Node nameNode = classNode.getFirstChild(); if (!nameNode.isEmpty()) { // Just empty the class's name. If the expression is assigned to an unused variable, // then the whole class might still be removed as part of that assignment. classNode.replaceChild(nameNode, IR.empty().useSourceInfoFrom(nameNode)); compiler.reportChangeToEnclosingScope(classNode); } } } @Override public String toString() { return "NamedClassExpression:" + classNode; } } private class ClassOrPrototypeNamedProperty extends Removable { final Node propertyNode; ClassOrPrototypeNamedProperty(RemovableBuilder builder, Node propertyNode) { super(builder); this.propertyNode = propertyNode; } @Override public boolean isStaticProperty() { return propertyNode.isStaticMember(); } @Override boolean isClassOrPrototypeNamedProperty() { return !isStaticProperty(); } @Override void removeInternal(AbstractCompiler compiler) { NodeUtil.deleteNode(propertyNode, compiler); } @Override public String toString() { return "ClassOrPrototypeNamedProperty:" + propertyNode; } } /** * Represents a single property definition in the object literal passed as the second argument to * e.g. `Object.defineProperties(obj, {p1: {value: 1}, p2: {value: 3}});`. */ private class ObjectDefinePropertiesDefinition extends Removable { final Node propertyNode; ObjectDefinePropertiesDefinition(RemovableBuilder builder, Node propertyNode) { super(builder); this.propertyNode = propertyNode; } @Override public boolean isObjectDefinePropertiesDefinition() { return true; } @Override void removeInternal(AbstractCompiler compiler) { NodeUtil.deleteNode(propertyNode, compiler); } } private class FunctionDeclaration extends Removable { final Node functionDeclarationNode; FunctionDeclaration(RemovableBuilder builder, Node functionDeclarationNode) { super(builder); this.functionDeclarationNode = functionDeclarationNode; } @Override public void removeInternal(AbstractCompiler compiler) { NodeUtil.deleteNode(functionDeclarationNode, compiler); } @Override boolean isAssignedValueLocal() { // The declared function is always created locally. return true; } @Override public String toString() { return "FunctionDeclaration:" + functionDeclarationNode; } } private class NameDeclarationStatement extends Removable { private final Node declarationStatement; public NameDeclarationStatement(RemovableBuilder builder, Node declarationStatement) { super(builder); checkArgument(NodeUtil.isNameDeclaration(declarationStatement), declarationStatement); this.declarationStatement = declarationStatement; } @Override void removeInternal(AbstractCompiler compiler) { Node nameNode = declarationStatement.getOnlyChild(); Node valueNode = nameNode.getFirstChild(); if (valueNode != null && astAnalyzer.mayHaveSideEffects(valueNode)) { compiler.reportChangeToEnclosingScope(declarationStatement); valueNode.detach(); declarationStatement.replaceWith(IR.exprResult(valueNode).useSourceInfoFrom(valueNode)); } else { NodeUtil.deleteNode(declarationStatement, compiler); } } @Override boolean isVariableAssignment() { return true; } @Override boolean isAssignedValueLocal() { Node nameNode = declarationStatement.getOnlyChild(); Node valueNode = nameNode.getFirstChild(); return valueNode == null || isLocalDefaultValueAssignment(nameNode, valueNode) || NodeUtil.evaluatesToLocalValue(valueNode); } @Override public String toString() { return "NameDeclStmt:" + declarationStatement; } } /** * True if targetNode is a qualified name and the valueNode is of the form `targetQualifiedName || * localValue`. */ private static boolean isLocalDefaultValueAssignment(Node targetNode, Node valueNode) { return valueNode.isOr() && targetNode.isQualifiedName() && valueNode.getFirstChild().isEquivalentTo(targetNode) && NodeUtil.evaluatesToLocalValue(valueNode.getLastChild()); } enum Kind { // X = something; VARIABLE, // X.propertyName = something; // X.prototype.propertyName = something; NAMED_PROPERTY, // X[expression] = something; // X.prototype[expression] = something; COMPUTED_PROPERTY; } private class Assign extends Removable { final Node assignNode; final Kind kind; Assign( RemovableBuilder builder, Node assignNode, Kind kind, @Nullable Node propertyNode) { super(builder); checkArgument(NodeUtil.isAssignmentOp(assignNode), assignNode); if (kind == Kind.VARIABLE) { checkArgument( propertyNode == null, "got property node for simple variable assignment: %s", propertyNode); } else { checkArgument(propertyNode != null, "missing property node"); if (kind == Kind.NAMED_PROPERTY) { checkArgument(propertyNode.isString(), "property name is not a string: %s", propertyNode); } } this.assignNode = assignNode; this.kind = kind; } /** True for `varName = value` assignments. */ @Override boolean isVariableAssignment() { return kind == Kind.VARIABLE; } @Override boolean isAssignedValueLocal() { if (NodeUtil.isExpressionResultUsed(assignNode)) { // assigned value may escape or be aliased return false; } else { Node targetNode = assignNode.getFirstChild(); Node valueNode = targetNode.getNext(); return NodeUtil.evaluatesToLocalValue(valueNode) || isLocalDefaultValueAssignment(targetNode, valueNode); } } @Override public boolean preventsRemovalOfVariableWithNonLocalValueOrPrototype() { // If we don't know where the variable comes from or where it may go, then we don't know // whether it is safe to remove assignments to properties on it. return isNamedPropertyAssignment() || isComputedPropertyAssignment(); } /** True for `varName.propName = value` and `varName.prototype.propName = value` assignments. */ @Override boolean isNamedPropertyAssignment() { return kind == Kind.NAMED_PROPERTY; } /** True for `varName[expr] = value` and `varName.prototype[expr] = value` assignments. */ boolean isComputedPropertyAssignment() { return kind == Kind.COMPUTED_PROPERTY; } @Override public boolean isStaticProperty() { Node lhs = assignNode.getFirstChild(); if (lhs.isGetProp()) { // something.propName = someValue Node getPropLhs = lhs.getFirstChild(); JSType typeI = getPropLhs.getJSType(); return typeI != null && (typeI.isConstructor() || typeI.isInterface()); } else { return false; } } /** Replace the current assign with its right hand side. */ @Override public void removeInternal(AbstractCompiler compiler) { if (alreadyRemoved(assignNode)) { return; } Node parent = assignNode.getParent(); compiler.reportChangeToEnclosingScope(parent); Node lhs = assignNode.getFirstChild(); Node rhs = assignNode.getSecondChild(); boolean mustPreserveRhs = astAnalyzer.mayHaveSideEffects(rhs) || NodeUtil.isExpressionResultUsed(assignNode); boolean mustPreserveGetElmExpr = lhs.isGetElem() && astAnalyzer.mayHaveSideEffects(lhs.getLastChild()); if (mustPreserveRhs && mustPreserveGetElmExpr) { Node replacement = IR.comma(lhs.getLastChild().detach(), rhs.detach()).useSourceInfoFrom(assignNode); replaceNodeWith(assignNode, replacement); } else if (mustPreserveGetElmExpr) { replaceNodeWith(assignNode, lhs.getLastChild().detach()); } else if (mustPreserveRhs) { replaceNodeWith(assignNode, rhs.detach()); } else { removeExpressionCompletely(assignNode); } } @Override public String toString() { return "Assign:" + assignNode; } } /** Represents `(someObjectExpression).prototype.propertyName = someValue`. */ private class AnonymousPrototypeNamedPropertyAssign extends Removable { final Node assignNode; AnonymousPrototypeNamedPropertyAssign(RemovableBuilder builder, Node assignNode) { super(builder); checkNotNull(builder.propertyName); checkArgument(assignNode.isAssign(), assignNode); this.assignNode = assignNode; } @Override void removeInternal(AbstractCompiler compiler) { if (alreadyRemoved(assignNode)) { return; } Node parent = assignNode.getParent(); compiler.reportChangeToEnclosingScope(parent); Node lhs = assignNode.getFirstChild(); Node rhs = assignNode.getLastChild(); checkState(lhs.isGetProp(), lhs); Node objDotPrototype = lhs.getFirstChild(); checkState(objDotPrototype.isGetProp(), objDotPrototype); Node objExpression = objDotPrototype.getFirstChild(); Node prototype = objDotPrototype.getLastChild(); checkState(prototype.getString().equals("prototype"), prototype); boolean mustPreserveRhs = astAnalyzer.mayHaveSideEffects(rhs) || NodeUtil.isExpressionResultUsed(assignNode); boolean mustPreserveObjExpression = astAnalyzer.mayHaveSideEffects(objExpression); if (mustPreserveRhs && mustPreserveObjExpression) { Node replacement = IR.comma(objExpression.detach(), rhs.detach()).useSourceInfoFrom(assignNode); replaceNodeWith(assignNode, replacement); } else if (mustPreserveObjExpression) { replaceNodeWith(assignNode, objExpression.detach()); } else if (mustPreserveRhs) { replaceNodeWith(assignNode, rhs.detach()); } else { removeExpressionCompletely(assignNode); } } @Override boolean isPrototypeProperty() { return true; } @Override public String toString() { return "AnonymousPrototypeNamedPropertyAssign:" + assignNode; } } /** * Represents a call to a class setup method such as `goog.inherits()` or * `goog.addSingletonGetter()`. */ private class ClassSetupCall extends Removable { final Node callNode; ClassSetupCall(RemovableBuilder builder, Node callNode) { super(builder); this.callNode = callNode; } @Override public void removeInternal(AbstractCompiler compiler) { Node parent = callNode.getParent(); Node replacement = null; // Need to keep call args that have side effects. // Easiest thing to do is break apart the call node as we go. // First child is the callee (aka. Object.defineProperties or equivalent) callNode.removeFirstChild(); for (Node arg = callNode.getLastChild(); arg != null; arg = callNode.getLastChild()) { arg.detach(); if (astAnalyzer.mayHaveSideEffects(arg)) { if (replacement == null) { replacement = arg; } else { replacement = IR.comma(arg, replacement).srcref(callNode); } } else { NodeUtil.markFunctionsDeleted(arg, compiler); } } // NOTE: The call must either be its own statement or the LHS of a comma expression, // because it doesn't have a meaningful return value. if (replacement != null) { replaceNodeWith(callNode, replacement); } else if (parent.isExprResult()) { NodeUtil.deleteNode(parent, compiler); } else { // `(goog.inherits(A, B), something)` -> `something` checkState(parent.isComma()); Node rhs = checkNotNull(callNode.getNext()); compiler.reportChangeToEnclosingScope(parent); parent.replaceWith(rhs.detach()); } } @Override public boolean preventsRemovalOfVariableWithNonLocalValueOrPrototype() { // If we aren't sure where X comes from and what aliases it might have, we cannot be sure // it's safe to remove the class setup for it. return true; } @Override public String toString() { return "ClassSetupCall:" + callNode; } } private static boolean alreadyRemoved(Node n) { Node parent = n.getParent(); if (parent == null) { return true; } if (parent.isRoot()) { return false; } return alreadyRemoved(parent); } private class VarInfo { /** * Objects that represent variable declarations, assignments, or class setup calls that can * be removed. * * NOTE: Once we realize that we cannot remove the variable, this list will be cleared and * no more will be added. */ final List removables = new ArrayList<>(); boolean isEntirelyRemovable = true; boolean hasNonLocalOrNonLiteralValue = false; boolean requiresLocalLiteralValueForRemoval = false; void addRemovable(Removable removable) { if (!removable.isAssignedValueLocal() && (removable.isVariableAssignment() || removable.isPrototypeAssignment())) { hasNonLocalOrNonLiteralValue = true; } if (removable.preventsRemovalOfVariableWithNonLocalValueOrPrototype()) { requiresLocalLiteralValueForRemoval = true; } if (hasNonLocalOrNonLiteralValue && requiresLocalLiteralValueForRemoval) { setIsExplicitlyNotRemovable(); } if (isEntirelyRemovable) { // Store for possible removal later. removables.add(removable); } else { considerForIndependentRemoval(removable); } } /** * Marks this variable as referenced and evaluates any continuations if not previously marked as * referenced. * * @return true if the variable was not already marked as referenced */ boolean markAsReferenced() { return setIsExplicitlyNotRemovable(); } boolean isRemovable() { return isEntirelyRemovable; } boolean setIsExplicitlyNotRemovable() { if (isEntirelyRemovable) { isEntirelyRemovable = false; for (Removable r : removables) { considerForIndependentRemoval(r); } removables.clear(); return true; } else { return false; } } void removeAllRemovables() { checkState(isEntirelyRemovable); for (Removable removable : removables) { removable.remove(compiler); } removables.clear(); } } /** * Makes a new PolyfillInfo, including the correct Removable. Parses the name to determine whether * this is a global, static, or prototype polyfill. */ private PolyfillInfo createPolyfillInfo(Node call, Scope scope, String name) { checkState(scope.isGlobal()); checkState(call.getParent().isExprResult()); // Make the removable and polyfill info. Add continuations for all arguments. RemovableBuilder builder = new RemovableBuilder(); for (Node n = call.getFirstChild().getNext(); n != null; n = n.getNext()) { builder.addContinuation(new Continuation(n, scope)); } Polyfill removable = builder.buildPolyfill(call.getParent()); int lastDot = name.lastIndexOf("."); if (lastDot < 0) { return new GlobalPolyfillInfo(removable, name); } String owner = name.substring(0, lastDot); String prop = name.substring(lastDot + 1); boolean typed = call.getJSType() != null; if (owner.endsWith(DOT_PROTOTYPE)) { owner = owner.substring(0, owner.length() - DOT_PROTOTYPE.length()); return new PrototypePropertyPolyfillInfo( removable, prop, typed ? compiler.getTypeRegistry().getType(scope, owner) : null); } ObjectType ownerInstanceType = typed ? ObjectType.cast(compiler.getTypeRegistry().getType(scope, owner)) : null; JSType ownerCtorType = ownerInstanceType != null ? ownerInstanceType.getConstructor() : null; return new StaticPropertyPolyfillInfo(removable, prop, ownerCtorType, owner); } private static final String DOT_PROTOTYPE = ".prototype"; /** * Stores information about definitions and usages of polyfills. * *

The polyfill removal strategy is as follows. First, look for all the polyfill definitions, * whose names are stores as strings passed as the first argument to {@code $jscomp.polyfill}. * Each definition falls into one of three categories: (1) global names, such as {@code Map} or * {@code Promise}; (2) static properties, such as {@code Array.from} or {@code Reflect.get}, * which must always have exactly two name components; or (3) prototype properties, such as {@code * String.prototype.repeat} or {@code Promise.prorotype.finally}, which must always have exactly * three name components. The definition can be removed once it is found that there is an * unguarded reference to it. References guarded by existence or truthiness checks (such as * {@code if (Promise) return Promise.resolve('ok');} do not prevent removal of the polyfill * definition. * *

Determining whether a node is a reference (guarded or not) depends on the type of polyfill. * When type information is available, the type of the expected owner (i.e. the global object for * global polyfills, the namespace or class for static polyfills, or an instance of the owning * class (or its implicit prototype) for prototype polyfills) is used exclusively to determine * this with very good accuracy. Types are considered to match if a direct cast would be allowed * without a warning (i.e. some element of the union is a direct subtype or supertype). * *

When type information is not available (or is too loose) then we fall back on a heuristic: * *

    *
  • globals are referenced by any same-named NAME node or any GETPROP node whose last child * has the same string (this allows matching {@code goog.global.Map}, but will also match * {@code MyOuter.Map}). *
  • static properties are referenced by any GETPROP node whose last child is the same as the * polyfill's property name and whose owner references the polyfill owner per the above * rule. *
  • prototype properties are referenced by any GETPROP node whose last child is the same as * the polyfill's property name, regardless of its owner. *
* *

Note that this results in both false positives and false negatives in untyped code: we may * remove polyfills that are actually used (e.g. if {@code Array.from} is accessed via a subclass * as {@code SubArray.from} or in a subclass' static method as {@code this.from}) and we may * retain polyfills that are not used (e.g. if a user-defined nested class shares the same name as * a global builtin, as in {@code Foo.Map}). For greater consistency we may shift this balance in * the future to eliminate the possibility of incorrect removals, at the cost of more incorrect * retentions. */ private abstract static class PolyfillInfo { /** The {@link Polyfill} instance corresponding to the polyfill's definition. */ final Polyfill removable; /** The rightmost component of the polyfill's qualified name (does not contain a dot). */ final String key; /** Whether the polyfill is unreferenced and this can be removed safely. */ boolean isRemovable = true; PolyfillInfo(Polyfill removable, String key) { this.removable = removable; this.key = key; } /** * Accepts a NAME or GETPROP node whose (property) string matches {@code key} and checks whether * the node should be considered as a possible reference to this polyfill. If so, mark the * polyfill as referenced and therefore not removable. */ void considerPossibleReference(Node n) { if (isRemovable) { considerPossibleReferenceInternal(n); if (!isRemovable) { removable.applyContinuations(); } } } /** Template method to check the node. */ abstract void considerPossibleReferenceInternal(Node n); } private class GlobalPolyfillInfo extends PolyfillInfo { GlobalPolyfillInfo(Polyfill removable, String name) { super(removable, name); } @Override void considerPossibleReferenceInternal(Node possiblyReferencingNode) { if (possiblyReferencingNode.isName()) { // A matching NAME node must be a reference (there's no need to check that the referenced // Var is global, since local variables have all been renamed by normalization). isRemovable = false; } else if (possiblyReferencingNode.isGetProp()) { // Does the owner have type information? If so then this is a reference only if the owner // could be the global 'this' type. Absent type information, just always assume it might be. JSType ownerType = possiblyReferencingNode.getFirstChild().getJSType(); if (ownerType == null || ownerType.canCastTo( compiler.getTypeRegistry().getNativeType(JSTypeNative.GLOBAL_THIS))) { isRemovable = false; } } } } private class StaticPropertyPolyfillInfo extends PolyfillInfo { // Type of the owner, if available. @Nullable final JSType polyfillOwnerType; // Name of the owning type, used only when there's no type information. final String polyfillOwnerName; StaticPropertyPolyfillInfo( Polyfill removable, String key, @Nullable JSType owner, String ownerName) { super(removable, key); this.polyfillOwnerName = ownerName; this.polyfillOwnerType = owner; } @Override void considerPossibleReferenceInternal(Node possiblyReferencingNode) { if (!possiblyReferencingNode.isGetProp()) { return; } Node nodeOwner = possiblyReferencingNode.getFirstChild(); JSType nodeOwnerType = nodeOwner.getJSType(); if (polyfillOwnerType != null && nodeOwnerType != null) { if (typesAreRelated(polyfillOwnerType, nodeOwnerType)) { isRemovable = false; } return; } // no type information: check polyfillOwnerName instead. if ((nodeOwner.isGetProp() && nodeOwner.getLastChild().getString().equals(polyfillOwnerName)) || (nodeOwner.isName() && nodeOwner.getString().equals(polyfillOwnerName))) { isRemovable = false; } } } private class PrototypePropertyPolyfillInfo extends PolyfillInfo { @Nullable final JSType polyfillOwnerType; PrototypePropertyPolyfillInfo(Polyfill removable, String key, @Nullable JSType owner) { super(removable, key); this.polyfillOwnerType = owner; } @Override void considerPossibleReferenceInternal(Node possiblyReferencingNode) { if (!possiblyReferencingNode.isGetProp()) { return; } JSType nodeOwnerType = possiblyReferencingNode.getFirstChild().getJSType(); if (polyfillOwnerType != null && nodeOwnerType != null) { if (typesAreRelated(polyfillOwnerType, nodeOwnerType)) { isRemovable = false; } return; } // Fallback for no type information: prototype properties are simply not removable. isRemovable = false; } } private static boolean typesAreRelated(JSType expected, JSType actual) { if (actual.isConstructor() && expected.isConstructor()) { // All constructors can cast to one another, even if they're incompatible. // If both types are constructors then compare the instance types instead. actual = actual.toMaybeFunctionType().getInstanceType(); expected = expected.toMaybeFunctionType().getInstanceType(); } actual = firstNonNull(actual.autobox(), actual); return actual.canCastTo(expected); } /** * Represents declarations in the standard for-loop initialization. * *

e.g. the `let i = 0` part of `for (let i = 0; i < 10; ++i) {...}`. These must be handled * differently from declaration statements because: * *

    *
  1. For-loop declarations may declare more than one variable. The normalization doesn't break * them up as it does for declaration statements. *
  2. Removal must be handled differently. *
  3. We don't currently preserve initializers with side effects here. Instead, we just * consider such cases non-removable. *
*/ private class VanillaForNameDeclaration extends Removable { private final Node nameNode; private VanillaForNameDeclaration(RemovableBuilder builder, Node nameNode) { super(builder); this.nameNode = nameNode; } @Override void removeInternal(AbstractCompiler compiler) { Node declaration = checkNotNull(nameNode.getParent()); compiler.reportChangeToEnclosingScope(declaration); // NOTE: We don't need to preserve the initializer value, because we currently do not remove // for-loop vars whose initializing values have side effects. if (nameNode.getPrevious() == null && nameNode.getNext() == null) { // only child, so we can remove the whole declaration declaration.replaceWith(IR.empty().useSourceInfoFrom(declaration)); } else { declaration.removeChild(nameNode); } NodeUtil.markFunctionsDeleted(nameNode, compiler); } } void removeExpressionCompletely(Node expression) { checkState(!NodeUtil.isExpressionResultUsed(expression), expression); Node parent = expression.getParent(); if (parent.isExprResult()) { NodeUtil.deleteNode(parent, compiler); } else if (parent.isComma()) { // Expression is probably the first child of the comma, // but it could be the second if the entire comma expression value is unused. Node otherChild = expression.getNext(); if (otherChild == null) { otherChild = expression.getPrevious(); } replaceNodeWith(parent, otherChild.detach()); } else { // value isn't needed, but we need to keep the AST valid. replaceNodeWith(expression, IR.number(0).useSourceInfoFrom(expression)); } } void replaceNodeWith(Node n, Node replacement) { compiler.reportChangeToEnclosingScope(n); n.replaceWith(replacement); NodeUtil.markFunctionsDeleted(n, compiler); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy