com.google.javascript.jscomp.RescopeGlobalSymbols Maven / Gradle / Ivy
Show all versions of closure-compiler-unshaded Show documentation
/*
* Copyright 2011 The Closure Compiler Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.javascript.jscomp;
import static com.google.common.base.Preconditions.checkState;
import com.google.common.collect.ImmutableSet;
import com.google.javascript.jscomp.NodeTraversal.AbstractPostOrderCallback;
import com.google.javascript.jscomp.NodeTraversal.AbstractShallowStatementCallback;
import com.google.javascript.rhino.IR;
import com.google.javascript.rhino.Node;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
/**
* Finds all references to global symbols and rewrites them to be property accesses to a special
* object with the same name as the global symbol.
*
* Given the name of the global object is NS
*
*
var a = 1; function b() { return a }
*
* becomes
*
* NS.a = 1; NS.b = function b() { return NS.a }
*
* This allows splitting code into modules that depend on each other's global symbols, without using
* polluting JavaScript's global scope with those symbols. You typically define just a single global
* symbol, wrap each module in a function wrapper, and pass the global symbol around, eg,
*
* var uniqueNs = uniqueNs || {};
*
* (function (NS) { ...your module code here... })(uniqueNs);
*
* This compile step requires rewriteGlobalDeclarationsForTryCatchWrapping to be turned on to
* guarantee semantics.
*
*
For lots of examples, see the unit test.
*/
final class RescopeGlobalSymbols implements CompilerPass {
// Appended to variables names that conflict with globalSymbolNamespace.
private static final String DISAMBIGUATION_SUFFIX = "$";
private final AbstractCompiler compiler;
private final String globalSymbolNamespace;
private final boolean addExtern;
private final boolean assumeCrossModuleNames;
private final Set crossModuleNames = new HashSet<>();
/** Global identifiers that may be a non-arrow function referencing "this" */
private final Set maybeReferencesThis = new HashSet<>();
private ImmutableSet externNames;
/**
* Constructor for the RescopeGlobalSymbols compiler pass.
*
* @param compiler The JSCompiler, for reporting code changes.
* @param globalSymbolNamespace Name of namespace into which all global
* symbols are transferred.
* @param assumeCrossModuleNames If true, all global symbols will be assumed
* cross module boundaries and thus require renaming.
*/
RescopeGlobalSymbols(
AbstractCompiler compiler,
String globalSymbolNamespace,
boolean assumeCrossModuleNames) {
this(compiler, globalSymbolNamespace, true, assumeCrossModuleNames);
}
/**
* Constructor for the RescopeGlobalSymbols compiler pass for use in testing.
*
* @param compiler The JSCompiler, for reporting code changes.
* @param globalSymbolNamespace Name of namespace into which all global
* symbols are transferred.
* @param addExtern If true, the compiler will consider the
* globalSymbolNamespace an extern name.
* @param assumeCrossModuleNames If true, all global symbols will be assumed
* cross module boundaries and thus require renaming.
* VisibleForTesting
*/
RescopeGlobalSymbols(
AbstractCompiler compiler,
String globalSymbolNamespace,
boolean addExtern,
boolean assumeCrossModuleNames) {
this.compiler = compiler;
this.globalSymbolNamespace = globalSymbolNamespace;
this.addExtern = addExtern;
this.assumeCrossModuleNames = assumeCrossModuleNames;
}
private boolean isCrossModuleName(String name) {
return assumeCrossModuleNames
|| crossModuleNames.contains(name)
|| compiler.getCodingConvention().isExported(name, /* local= */ false);
}
private boolean isExternVar(String varname, NodeTraversal t) {
if (varname.isEmpty()) {
return false;
}
Var v = t.getScope().getVar(varname);
return v == null
|| v.isExtern()
|| (v.getScope().isGlobal() && this.externNames.contains(varname));
}
private void addExternForGlobalSymbolNamespace() {
Node varNode = IR.var(IR.name(globalSymbolNamespace));
CompilerInput input = compiler.getSynthesizedExternsInput();
input.getAstRoot(compiler).addChildToBack(varNode);
compiler.reportChangeToEnclosingScope(varNode);
}
@Override
public void process(Node externs, Node root) {
// Collect variables in externs; they can be shadowed by the same names in global scope.
this.externNames = NodeUtil.collectExternVariableNames(this.compiler, externs);
// Make the name of the globalSymbolNamespace an extern.
if (addExtern) {
addExternForGlobalSymbolNamespace();
}
// Rewrite all references to global symbols to properties of a single symbol:
// Turn global named function statements into var assignments.
NodeTraversal.traverse(
compiler, root, new RewriteGlobalClassFunctionDeclarationsToVarAssignmentsCallback());
// Find global names that are used in more than one module. Those that
// are have to be rewritten.
List nonMutatingPasses = new ArrayList<>();
nonMutatingPasses.add(new FindCrossModuleNamesCallback());
// And find names that may refer to functions that reference this.
nonMutatingPasses.add(new FindNamesReferencingThis());
CombinedCompilerPass.traverse(compiler, root, nonMutatingPasses);
// Rewrite all references to be property accesses of the single symbol.
RewriteScopeCallback rewriteScope = new RewriteScopeCallback();
NodeTraversal.traverse(compiler, root, rewriteScope);
// Remove the var from statements in global scope if the declared names have been rewritten
// in the previous pass.
NodeTraversal.traverse(compiler, root, new RemoveGlobalVarCallback());
rewriteScope.declareModuleGlobals();
}
/**
* Rewrites global function and class declarations to var statements + assignment. Ignores
* non-global function and class declarations.
*
* function test(){}
*
* becomes
*
* var test = function (){}
*
* class A {}
*
* becomes
*
* var A = class {}
*
* After this traversal, the special case of global class and function statements can be ignored.
*
* This is helpful when rewriting simple names to property accesses on the global symbol, since
* {@code class A {}} cannot be rewritten directly to {@code class NS.A {}}
*/
private class RewriteGlobalClassFunctionDeclarationsToVarAssignmentsCallback
extends AbstractShallowStatementCallback {
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
// Ignore block scopes within the global scope, as class and function declarations are
// block-scoped.
// Note that we should never find block-scoped function declarations if outputting ES5
// code. Es6RewriteBlockScopedFunctionDeclaration will have rewritten them.
if (!t.inGlobalScope()) {
return;
}
// Ignore everything that's not a function or class declaration.
if (!NodeUtil.isFunctionDeclaration(n) && !NodeUtil.isClassDeclaration(n)) {
return;
}
Node nameNode = NodeUtil.getNameNode(n);
String name = nameNode.getString();
// Remove the class or function name. Anonymous classes have an EMPTY node, while anonymous
// functions have a NAME node with an empty string.
if (n.isClass()) {
nameNode.replaceWith(IR.empty().srcref(nameNode));
} else {
nameNode.setString("");
compiler.reportChangeToEnclosingScope(nameNode);
}
Node prev = n.getPrevious();
n.detach();
Node var = NodeUtil.newVarNode(name, n);
if (prev == null) {
parent.addChildToFront(var);
} else {
var.insertAfter(prev);
}
compiler.reportChangeToEnclosingScope(parent);
}
}
/**
* Find all global names that are used in more than one module. The following
* compiler transformations can ignore the globals that are not.
*/
private class FindCrossModuleNamesCallback extends
AbstractPostOrderCallback {
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
if (n.isName()) {
String name = n.getString();
if ("".equals(name) || crossModuleNames.contains(name)) {
return;
}
Scope s = t.getScope();
Var v = s.getVar(name);
if (v == null || !v.isGlobal()) {
return;
}
CompilerInput input = v.getInput();
if (input == null) {
// We know nothing. Assume name is used across modules.
crossModuleNames.add(name);
return;
}
// Compare the module where the variable is declared to the current
// module. If they are different, the variable is used across modules.
JSChunk module = input.getChunk();
if (module != t.getChunk()) {
crossModuleNames.add(name);
}
}
}
}
/**
* Builds the maybeReferencesThis set of names that may reference a function
* that references this. If the function a name references does not reference
* this it can be called as a method call where the this value is not the
* same as in a normal function call.
*/
private class FindNamesReferencingThis extends
AbstractPostOrderCallback {
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
if (n.isName()) {
String name = n.getString();
if (name.isEmpty()) {
return;
}
Node value = null;
if (parent.isAssign() && n == parent.getFirstChild()) {
value = parent.getLastChild();
} else if (NodeUtil.isNameDeclaration(parent)) {
value = n.getFirstChild();
} else if (parent.isFunction()) {
value = parent;
}
if (value == null && !NodeUtil.isLhsByDestructuring(n)) {
// If n is assigned in a destructuring pattern, don't bother finding its value and just
// assume it may reference this.
return;
}
// We already added this symbol. Done after checks above because those
// are comparatively cheap.
if (maybeReferencesThis.contains(name)) {
return;
}
Scope s = t.getScope();
Var v = s.getVar(name);
if (v == null || !v.isGlobal()) {
return;
}
// If anything but a function is assigned we assume that possibly
// a function referencing this is being assigned. Otherwise we
// check whether the function assigned is a) an arrow function, which has a
// lexically-scoped this, or b) a non-arrow function that does not reference this.
if (value == null || !value.isFunction() || NodeUtil.referencesOwnReceiver(value)) {
maybeReferencesThis.add(name);
}
}
}
}
/**
* Visits each NAME token and checks whether it refers to a global variable. If yes, rewrites the
* name to be a property access on the "globalSymbolNamespace". If the NAME is an extern variable,
* it becomes a property access on window.
*
*
var a = 1, b = 2, c = 3;
*
* becomes
*
* var NS.a = 1, NS.b = 2, NS.c = 4
*
* (The var token is removed in a later traversal.)
*
* a + b
*
* becomes
*
* NS.a + NS.b
*
* a()
*
* becomes
*
* (0,NS.a)()
*
* Notice the special syntax here to preserve the *this* semantics in the function call.
*
* var {a: b} = {}
*
* becomes
*
* var {a: NS.b} = {}
*
* (This is invalid syntax, but the VAR token is removed later).
*/
private class RewriteScopeCallback implements NodeTraversal.Callback {
final List preDeclarations = new ArrayList<>();
@Override
public boolean shouldTraverse(NodeTraversal t, Node n, Node parent) {
if (NodeUtil.isNameDeclaration(n)) {
visitNameDeclaration(t, n);
}
return true;
}
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
if (n.isName()) {
visitName(t, n, parent);
}
}
private void visitNameDeclaration(NodeTraversal t, Node declaration) {
ArrayList allLhsNodes = new ArrayList<>();
NodeUtil.visitLhsNodesInNode(declaration, allLhsNodes::add);
if (allLhsNodes.isEmpty()) {
return;
}
boolean hasImportantName = false;
boolean isGlobalDeclaration = t.getScope().getVar(allLhsNodes.get(0).getString()).isGlobal();
// Check if any names are in the externs or are global and cross module.
for (Node lhs : allLhsNodes) {
checkState(lhs.isName(), "Unexpected lhs node %s, expected NAME", lhs);
if ((isGlobalDeclaration && isCrossModuleName(lhs.getString()))
|| isExternVar(lhs.getString(), t)) {
hasImportantName = true;
break;
}
}
if (hasImportantName) {
rewriteNameDeclaration(t, declaration, allLhsNodes, isGlobalDeclaration);
}
}
/**
* Partially rewrites a declaration as an assignment.
*
* In the post traversal, all global, cross-module names and extern name references will
* become property accesses. They will then be invalid as the lhs of a declaration, so we need
* to convert them to assignments. We also convert any other names or destructuring patterns in
* the same declaration to assignments and add an earlier declaration.
*/
private void rewriteNameDeclaration(
NodeTraversal t, Node declaration, List allLhsNodes, boolean isGlobalDeclaration) {
// Add predeclarations for variables that are neither global/cross-module names nor externs.
CompilerInput input = t.getInput();
for (Node lhs : allLhsNodes) {
String name = lhs.getString();
if (!(isGlobalDeclaration && isCrossModuleName(name)) && !isExternVar(name, t)) {
preDeclarations.add(
new ModuleGlobal(input.getAstRoot(compiler), IR.name(name).srcref(lhs)));
}
}
// Convert all names with an rhs and all destructuring patterns to be assignments. e.g.
// VAR
// NAME foo
// NUMBER 3
// becomes
// VAR
// ASSIGN
// NAME foo
// NUMBER 3
for (Node child = declaration.getFirstChild(); child != null; ) {
final Node next = child.getNext();
if (child.isName() && child.hasChildren()) {
Node assign = IR.assign(child.cloneNode(), child.removeFirstChild());
child.replaceWith(assign);
assign.setJSDocInfo(declaration.getJSDocInfo());
} else if (child.isDestructuringLhs()) {
if (child.hasOneChild()) {
checkState(
NodeUtil.isEnhancedFor(declaration.getParent()),
"DESTRUCTURING_LHS should have two children: %s",
declaration.toStringTree());
// remove the DESTRUCTURING_LHS but leave the actual destructuring pattern
child.replaceWith(child.removeFirstChild());
} else {
Node assign = IR.assign(child.removeFirstChild(), child.removeFirstChild());
child.replaceWith(assign);
assign.setJSDocInfo(declaration.getJSDocInfo());
}
}
child = next;
}
compiler.reportChangeToEnclosingScope(declaration);
}
private void visitName(NodeTraversal t, Node n, Node parent) {
String name = n.getString();
// Ignore anonymous functions
if (parent.isFunction() && name.isEmpty()) {
return;
}
if (isExternVar(name, t)) {
return;
}
// When the globalSymbolNamespace is used as a local variable name
// add suffix to avoid shadowing the namespace. Also add a suffix
// if a name starts with the name of the globalSymbolNamespace and
// the suffix.
Var var = t.getScope().getVar(name);
if (!var.isGlobal()
&& (name.equals(globalSymbolNamespace)
|| name.startsWith(globalSymbolNamespace + DISAMBIGUATION_SUFFIX))) {
n.setString(name + DISAMBIGUATION_SUFFIX);
compiler.reportChangeToEnclosingScope(n);
}
// We only care about global vars.
if (!(var.isGlobal() && isCrossModuleName(name))) {
return;
}
replaceSymbol(n, name);
}
/** Replaces a global cross-module name with an access on the global namespace symbol */
private void replaceSymbol(Node node, String name) {
Node parent = node.getParent();
Node replacement = IR.getprop(IR.name(globalSymbolNamespace), name);
replacement.srcrefTree(node);
node.replaceWith(replacement);
compiler.reportChangeToEnclosingScope(replacement);
if (parent.isCall() && !maybeReferencesThis.contains(name)) {
// Do not write calls like this: (0, _a)() but rather as _.a(). The
// this inside the function will be wrong, but it doesn't matter
// because the this is never read.
parent.putBooleanProp(Node.FREE_CALL, false);
}
compiler.reportChangeToEnclosingScope(parent);
}
/**
* Adds back declarations for variables that do not cross module boundaries.
* Must be called after RemoveGlobalVarCallback.
*/
void declareModuleGlobals() {
for (ModuleGlobal global : preDeclarations) {
if (global.root.hasChildren() && global.root.getFirstChild().isVar()) {
global.root.getFirstChild().addChildToBack(global.name);
} else {
global.root.addChildToFront(IR.var(global.name).srcref(global.name));
}
compiler.reportChangeToEnclosingScope(global.root);
}
}
/**
* Variable that doesn't cross module boundaries.
*/
private class ModuleGlobal {
final Node root;
final Node name;
ModuleGlobal(Node root, Node name) {
this.root = root;
this.name = name;
}
}
}
/**
* Removes every occurrence of var/let/const that declares a global variable.
*
* var NS.a = 1, NS.b = 2;
*
* becomes
*
* NS.a = 1; NS.b = 2;
*
* for (var a = 0, b = 0;;)
*
* becomes
*
* for (NS.a = 0, NS.b = 0;;)
*
* Declarations without assignments are optimized away:
*
* var a = 1, b;
*
* becomes
*
* NS.a = 1
*/
private class RemoveGlobalVarCallback extends AbstractShallowStatementCallback {
@Override
public void visit(NodeTraversal t, Node n, Node parent) {
if (!NodeUtil.isNameDeclaration(n)) {
return;
}
List commas = new ArrayList<>();
List interestingChildren = new ArrayList<>();
// Filter out declarations without assignments.
// As opposed to regular var nodes, there are always assignments
// because the previous traversal in RewriteScopeCallback creates
// them.
boolean allNameOrDestructuring = true;
for (Node c = n.getFirstChild(); c != null; c = c.getNext()) {
if (!c.isName() && !c.isDestructuringLhs()) {
allNameOrDestructuring = false;
}
if (c.isAssign() || NodeUtil.isAnyFor(parent)) {
interestingChildren.add(c);
}
}
// If every child of a var declares a name, it must stay in place.
// This is the case if none of the declared variables cross module
// boundaries.
if (allNameOrDestructuring) {
return;
}
for (Node c : interestingChildren) {
if (NodeUtil.isAnyFor(parent) && parent.getFirstChild() == n) {
commas.add(c.cloneTree());
} else {
// Var statement outside of for-loop.
Node expr = IR.exprResult(c.cloneTree()).srcref(c);
NodeUtil.markNewScopesChanged(expr, compiler);
expr.insertBefore(n);
}
}
if (!commas.isEmpty()) {
Node comma = joinOnComma(commas, n);
comma.insertBefore(n);
}
// Remove the var/const/let node.
n.detach();
NodeUtil.markFunctionsDeleted(n, compiler);
compiler.reportChangeToEnclosingScope(parent);
}
private Node joinOnComma(List commas, Node source) {
Node comma = commas.get(0);
for (int i = 1; i < commas.size(); i++) {
Node nextComma = IR.comma(comma, commas.get(i));
nextComma.srcrefIfMissing(source);
comma = nextComma;
}
return comma;
}
}
}