All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.NodeTraversal Maven / Gradle / Ivy

Go to download

Closure Compiler is a JavaScript optimizing compiler. It parses your JavaScript, analyzes it, removes dead code and rewrites and minimizes what's left. It also checks syntax, variable references, and types, and warns about common JavaScript pitfalls. It is used in many of Google's JavaScript apps, including Gmail, Google Web Search, Google Maps, and Google Docs.

There is a newer version: v20240317
Show newest version
/*
 * Copyright 2004 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.base.Strings.nullToEmpty;

import com.google.javascript.rhino.InputId;
import com.google.javascript.rhino.Node;
import com.google.javascript.rhino.Token;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;
import java.util.Set;
import javax.annotation.Nullable;

/**
 * NodeTraversal allows an iteration through the nodes in the parse tree,
 * and facilitates the optimizations on the parse tree.
 *
 */
public class NodeTraversal {
  private final AbstractCompiler compiler;
  private final Callback callback;

  /** Contains the current node*/
  private Node curNode;

  /** The change scope for the current node being visiteds */
  private Node currentChangeScope;

  /**
   * Stack containing the Scopes that have been created. The Scope objects
   * are lazily created; so the {@code scopeRoots} stack contains the
   * Nodes for all Scopes that have not been created yet.
   */
  private final Deque scopes = new ArrayDeque<>();

  /**
   * A stack of scope roots. All scopes that have not been created
   * are represented in this Deque.
   */
  private final ArrayList scopeRoots = new ArrayList<>();

  /**
   * Stack containing the control flow graphs (CFG) that have been created. There are fewer CFGs
   * than scopes, since block-level scopes are not valid CFG roots. The CFG objects are lazily
   * populated: elements are simply the CFG root node until requested by {@link
   * #getControlFlowGraph()}.
   */
  private final ArrayDeque cfgs = new ArrayDeque<>();

  /** The current source file name */
  private String sourceName;

  /** The current input */
  private InputId inputId;
  private CompilerInput compilerInput;

  /** The scope creator */
  private final ScopeCreator scopeCreator;
  private final boolean useBlockScope;

  /** Possible callback for scope entry and exist **/
  private ScopedCallback scopeCallback;

  /** Callback for passes that iterate over a list of change scope roots (FUNCTIONs and SCRIPTs) */
  public interface ChangeScopeRootCallback {
    void enterChangeScopeRoot(AbstractCompiler compiler, Node root);
  }

  /**
   * Callback for tree-based traversals
   */
  public interface Callback {
    /**
     * 

Visits a node in pre order (before visiting its children) and decides * whether this node's children should be traversed. If children are * traversed, they will be visited by * {@link #visit(NodeTraversal, Node, Node)} in postorder.

*

Implementations can have side effects (e.g. modifying the parse * tree).

* @return whether the children of this node should be visited */ boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent); /** *

Visits a node in postorder (after its children have been visited). * A node is visited only if all its parents should be traversed * ({@link #shouldTraverse(NodeTraversal, Node, Node)}).

*

Implementations can have side effects (e.g. modifying the parse * tree).

*/ void visit(NodeTraversal t, Node n, Node parent); } /** * Callback that also knows about scope changes */ public interface ScopedCallback extends Callback { /** * Called immediately after entering a new scope. The new scope can * be accessed through t.getScope() */ void enterScope(NodeTraversal t); /** * Called immediately before exiting a scope. The ending scope can * be accessed through t.getScope() */ void exitScope(NodeTraversal t); } /** * Abstract callback to visit all nodes in postorder. */ public abstract static class AbstractPostOrderCallback implements Callback { @Override public final boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { return true; } } /** Abstract callback to visit all nodes in preorder. */ public abstract static class AbstractPreOrderCallback implements Callback { @Override public final void visit(NodeTraversal t, Node n, Node parent) {} } /** Abstract scoped callback to visit all nodes in postorder. */ public abstract static class AbstractScopedCallback implements ScopedCallback { @Override public final boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { return true; } @Override public void enterScope(NodeTraversal t) {} @Override public void exitScope(NodeTraversal t) {} } /** * Abstract callback to visit all nodes but not traverse into function * bodies. */ public abstract static class AbstractShallowCallback implements Callback { @Override public final boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { // We do want to traverse the name of a named function, but we don't // want to traverse the arguments or body. return parent == null || !parent.isFunction() || n == parent.getFirstChild(); } } /** * Abstract callback to visit all structure and statement nodes but doesn't traverse into * functions or expressions. */ public abstract static class AbstractShallowStatementCallback implements Callback { @Override public final boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { return parent == null || NodeUtil.isControlStructure(parent) || NodeUtil.isStatementBlock(parent); } } /** * Abstract callback that knows when goog.modules (and in the future ES6 modules) are entered * and exited. This includes both whole file modules and bundled modules. */ public abstract static class AbstractModuleCallback implements ScopedCallback { /** * Called immediately after entering a module. */ public abstract void enterModule(NodeTraversal t, Node scopeRoot); /** * Called immediately before exiting a module. */ public abstract void exitModule(NodeTraversal t, Node scopeRoot); @Override public boolean shouldTraverse(NodeTraversal t, Node n, Node parent) { return true; } @Override public final void enterScope(NodeTraversal t) { Node scopeRoot = t.getScopeRoot(); if (NodeUtil.isModuleScopeRoot(scopeRoot)) { enterModule(t, scopeRoot); } } @Override public final void exitScope(NodeTraversal t) { Node scopeRoot = t.getScopeRoot(); if (NodeUtil.isModuleScopeRoot(scopeRoot)) { exitModule(t, scopeRoot); } } } /** * Abstract callback to visit a pruned set of nodes. */ public abstract static class AbstractNodeTypePruningCallback implements Callback { private final Set nodeTypes; private final boolean include; /** * Creates an abstract pruned callback. * @param nodeTypes the nodes to include in the traversal */ public AbstractNodeTypePruningCallback(Set nodeTypes) { this(nodeTypes, true); } /** * Creates an abstract pruned callback. * @param nodeTypes the nodes to include/exclude in the traversal * @param include whether to include or exclude the nodes in the traversal */ public AbstractNodeTypePruningCallback(Set nodeTypes, boolean include) { this.nodeTypes = nodeTypes; this.include = include; } @Override public boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { return include == nodeTypes.contains(n.getToken()); } } /** * Creates a node traversal using the specified callback interface * and the scope creator. */ public NodeTraversal(AbstractCompiler compiler, Callback cb, ScopeCreator scopeCreator) { this.callback = cb; if (cb instanceof ScopedCallback) { this.scopeCallback = (ScopedCallback) cb; } this.compiler = compiler; this.scopeCreator = scopeCreator; this.useBlockScope = scopeCreator.hasBlockScope(); } private void throwUnexpectedException(Throwable unexpectedException) { // If there's an unexpected exception, try to get the // line number of the code that caused it. String message = unexpectedException.getMessage(); // TODO(user): It is possible to get more information if curNode or // its parent is missing. We still have the scope stack in which it is still // very useful to find out at least which function caused the exception. if (inputId != null) { message = unexpectedException.getMessage() + "\n" + formatNodeContext("Node", curNode) + (curNode == null ? "" : formatNodeContext("Parent", curNode.getParent())); } compiler.throwInternalError(message, unexpectedException); } private String formatNodeContext(String label, Node n) { if (n == null) { return " " + label + ": NULL"; } return " " + label + "(" + n.toString(false, false, false) + "): " + formatNodePosition(n); } /** * Traverses a parse tree recursively. */ public void traverse(Node root) { try { initTraversal(root); curNode = root; pushScope(root); // null parent ensures that the shallow callbacks will traverse root traverseBranch(root, null); popScope(); } catch (Error | Exception unexpectedException) { throwUnexpectedException(unexpectedException); } } void traverseRoots(Node externs, Node root) { try { Node scopeRoot = externs.getParent(); checkNotNull(scopeRoot); initTraversal(scopeRoot); curNode = scopeRoot; pushScope(scopeRoot); traverseBranch(externs, scopeRoot); checkState(root.getParent() == scopeRoot); traverseBranch(root, scopeRoot); popScope(); } catch (Error | Exception unexpectedException) { throwUnexpectedException(unexpectedException); } } private static final String MISSING_SOURCE = "[source unknown]"; private String formatNodePosition(Node n) { String sourceFileName = getBestSourceFileName(n); if (sourceFileName == null) { return MISSING_SOURCE + "\n"; } int lineNumber = n.getLineno(); int columnNumber = n.getCharno(); String src = compiler.getSourceLine(sourceFileName, lineNumber); if (src == null) { src = MISSING_SOURCE; } return sourceFileName + ":" + lineNumber + ":" + columnNumber + "\n" + src + "\n"; } /** * Traverses a parse tree recursively with a scope, starting with the given * root. This should only be used in the global scope or module scopes. Otherwise, use * {@link #traverseAtScope}. */ void traverseWithScope(Node root, Scope s) { checkState(s.isGlobal() || s.isModuleScope(), s); try { initTraversal(root); curNode = root; pushScope(s); traverseBranch(root, null); popScope(); } catch (Error | Exception unexpectedException) { throwUnexpectedException(unexpectedException); } } /** * Traverses a parse tree recursively with a scope, starting at that scope's * root. */ void traverseAtScope(Scope s) { Node n = s.getRootNode(); initTraversal(n); curNode = n; Deque parentScopes = new ArrayDeque<>(); Scope temp = s.getParent(); while (temp != null) { parentScopes.push(temp); temp = temp.getParent(); } while (!parentScopes.isEmpty()) { pushScope(parentScopes.pop(), true); } if (n.isFunction()) { pushScope(s); Node args = n.getSecondChild(); Node body = args.getNext(); traverseBranch(args, n); traverseBranch(body, n); popScope(); } else if (n.isNormalBlock()) { pushScope(s); // traverseBranch is not called here to avoid re-creating the block scope. traverseChildren(n); popScope(); } else if (NodeUtil.isAnyFor(n)) { // ES6 Creates a separate for scope and for-body scope checkState(scopeCreator.hasBlockScope()); pushScope(s); Node forAssignmentParam = n.getFirstChild(); Node forIterableParam = forAssignmentParam.getNext(); Node forBodyScope = forIterableParam.getNext(); traverseBranch(forAssignmentParam, n); traverseBranch(forIterableParam, n); traverseBranch(forBodyScope, n); popScope(); } else if (n.isSwitch()) { // ES6 creates a separate switch scope with cases checkState(scopeCreator.hasBlockScope()); pushScope(s); traverseChildren(n); popScope(); } else { checkState(s.isGlobal() || s.isModuleScope(), "Expected global or module scope. Got:", s); traverseWithScope(n, s); } } private void traverseScopeRoot(Node scopeRoot) { try { initTraversal(scopeRoot); curNode = scopeRoot; initScopeRoots(scopeRoot.getParent()); traverseBranch(scopeRoot, scopeRoot.getParent()); } catch (Error | Exception unexpectedException) { throwUnexpectedException(unexpectedException); } } /** * Traverses *just* the contents of provided scope nodes (and optionally scopes nested within * them) but will fall back on traversing the entire AST from root if a null scope nodes list is * provided. * @param root If scopeNodes is null, this method will just traverse 'root' instead. If scopeNodes * is not null, this parameter is ignored. */ public static void traverseEs6ScopeRoots( AbstractCompiler compiler, @Nullable Node root, @Nullable List scopeNodes, final Callback cb, final boolean traverseNested) { traverseEs6ScopeRoots(compiler, root, scopeNodes, cb, null, traverseNested); } /** * Traverses *just* the contents of provided scope nodes (and optionally scopes nested within * them) but will fall back on traversing the entire AST from root if a null scope nodes list is * provided. Also allows for a callback to notify when starting on one of the provided scope * nodes. * @param root If scopeNodes is null, this method will just traverse 'root' instead. If scopeNodes * is not null, this parameter is ignored. */ public static void traverseEs6ScopeRoots( AbstractCompiler compiler, @Nullable Node root, @Nullable List scopeNodes, final Callback cb, @Nullable final ChangeScopeRootCallback changeCallback, final boolean traverseNested) { if (scopeNodes == null) { NodeTraversal.traverseEs6(compiler, root, cb); } else { MemoizedScopeCreator scopeCreator = new MemoizedScopeCreator(new Es6SyntacticScopeCreator(compiler)); for (final Node scopeNode : scopeNodes) { traverseSingleEs6ScopeRoot( compiler, cb, changeCallback, traverseNested, scopeCreator, scopeNode); } } } private static void traverseSingleEs6ScopeRoot( AbstractCompiler compiler, final Callback cb, @Nullable ChangeScopeRootCallback changeCallback, final boolean traverseNested, MemoizedScopeCreator scopeCreator, final Node scopeNode) { if (changeCallback != null) { changeCallback.enterChangeScopeRoot(compiler, scopeNode); } ScopedCallback scb = new ScopedCallback() { boolean insideScopeNode = false; @Override public boolean shouldTraverse(NodeTraversal t, Node n, Node parent) { if (scopeNode == n) { insideScopeNode = true; } return (traverseNested || scopeNode == n || !NodeUtil.isChangeScopeRoot(n)) && cb.shouldTraverse(t, n, parent); } @Override public void visit(NodeTraversal t, Node n, Node parent) { if (scopeNode == n) { insideScopeNode = false; } cb.visit(t, n, parent); } @Override public void enterScope(NodeTraversal t) { if (insideScopeNode && cb instanceof ScopedCallback) { ((ScopedCallback) cb).enterScope(t); } } @Override public void exitScope(NodeTraversal t) { if (insideScopeNode && cb instanceof ScopedCallback) { ((ScopedCallback) cb).exitScope(t); } } }; NodeTraversal.traverseEs6ScopeRoot(compiler, scopeNode, scb, scopeCreator); } /** * Traverse a function out-of-band of normal traversal. * * @param node The function node. * @param scope The scope the function is contained in. Does not fire enter/exit * callback events for this scope. */ public void traverseFunctionOutOfBand(Node node, Scope scope) { checkNotNull(scope); checkState(node.isFunction(), node); checkNotNull(scope.getRootNode()); initTraversal(node); curNode = node.getParent(); pushScope(scope, true /* quietly */); traverseBranch(node, curNode); popScope(true /* quietly */); } /** * Traverses an inner node recursively with a refined scope. An inner node may * be any node with a non {@code null} parent (i.e. all nodes except the * root). * * @param node the node to traverse * @param parent the node's parent, it may not be {@code null} * @param refinedScope the refined scope of the scope currently at the top of * the scope stack or in trivial cases that very scope or {@code null} */ void traverseInnerNode(Node node, Node parent, Scope refinedScope) { checkNotNull(parent); initTraversal(node); if (refinedScope != null && getScope() != refinedScope) { curNode = node; pushScope(refinedScope); traverseBranch(node, parent); popScope(); } else { traverseBranch(node, parent); } } public AbstractCompiler getCompiler() { return compiler; } /** * Gets the current line number, or zero if it cannot be determined. The line * number is retrieved lazily as a running time optimization. */ public int getLineNumber() { Node cur = curNode; while (cur != null) { int line = cur.getLineno(); if (line >= 0) { return line; } cur = cur.getParent(); } return 0; } /** * Gets the current char number, or zero if it cannot be determined. The line * number is retrieved lazily as a running time optimization. */ public int getCharno() { Node cur = curNode; while (cur != null) { int line = cur.getCharno(); if (line >= 0) { return line; } cur = cur.getParent(); } return 0; } /** * Gets the current input source name. * * @return A string that may be empty, but not null */ public String getSourceName() { return sourceName; } /** * Gets the current input source. */ public CompilerInput getInput() { if (compilerInput == null && inputId != null) { compilerInput = compiler.getInput(inputId); } return compilerInput; } /** * Gets the current input module. */ public JSModule getModule() { CompilerInput input = getInput(); return input == null ? null : input.getModule(); } /** Returns the node currently being traversed. */ public Node getCurrentNode() { return curNode; } /** * Traversal for passes that work only on changed functions. * Suppose a loopable pass P1 uses this traversal. * Then, if a function doesn't change between two runs of P1, it won't look at * the function the second time. * (We're assuming that P1 runs to a fixpoint, o/w we may miss optimizations.) * *

Most changes are reported with calls to Compiler.reportCodeChange(), which * doesn't know which scope changed. We keep track of the current scope by * calling Compiler.setScope inside pushScope and popScope. * The automatic tracking can be wrong in rare cases when a pass changes scope * w/out causing a call to pushScope or popScope. * * Passes that do cross-scope modifications call * Compiler.reportChangeToEnclosingScope(Node n). */ public static void traverseChangedFunctions( final AbstractCompiler compiler, final ChangeScopeRootCallback callback) { final Node jsRoot = compiler.getJsRoot(); NodeTraversal.traverseEs6(compiler, jsRoot, new AbstractPreOrderCallback() { @Override public final boolean shouldTraverse(NodeTraversal t, Node n, Node parent) { if (NodeUtil.isChangeScopeRoot(n) && compiler.hasScopeChanged(n)) { callback.enterChangeScopeRoot(compiler, n); } return true; } }); } /** * Traverses using the ES6SyntacticScopeCreator */ // TODO (stephshi): rename to "traverse" when the old traverse method is no longer used public static void traverseEs6(AbstractCompiler compiler, Node root, Callback cb) { NodeTraversal t = new NodeTraversal(compiler, cb, new Es6SyntacticScopeCreator(compiler)); t.traverse(root); } /** Traverses from a particular scope node using the ES6SyntacticScopeCreator */ private static void traverseEs6ScopeRoot( AbstractCompiler compiler, Node scopeNode, Callback cb, MemoizedScopeCreator scopeCreator) { NodeTraversal t = new NodeTraversal(compiler, cb, scopeCreator); t.traverseScopeRoot(scopeNode); } /** * @deprecated Use the ES6SyntacticScopeCreator instead. */ @Deprecated public static void traverseTyped(AbstractCompiler compiler, Node root, Callback cb) { NodeTraversal t = new NodeTraversal(compiler, cb, SyntacticScopeCreator.makeTyped(compiler)); t.traverse(root); } public static void traverseRootsEs6( AbstractCompiler compiler, Callback cb, Node externs, Node root) { NodeTraversal t = new NodeTraversal(compiler, cb, new Es6SyntacticScopeCreator(compiler)); t.traverseRoots(externs, root); } /** * @deprecated Use the ES6SyntacticScopeCreator instead. */ @Deprecated public static void traverseRootsTyped( AbstractCompiler compiler, Callback cb, Node externs, Node root) { NodeTraversal t = new NodeTraversal(compiler, cb, SyntacticScopeCreator.makeTyped(compiler)); t.traverseRoots(externs, root); } private void handleScript(Node n, Node parent) { setChangeScope(n); setInputId(n.getInputId(), getSourceName(n)); curNode = n; if (callback.shouldTraverse(this, n, parent)) { traverseChildren(n); curNode = n; callback.visit(this, n, parent); } setChangeScope(null); } private void handleFunction(Node n, Node parent) { Node changeScope = this.currentChangeScope; setChangeScope(n); curNode = n; if (callback.shouldTraverse(this, n, parent)) { traverseFunction(n, parent); curNode = n; callback.visit(this, n, parent); } setChangeScope(changeScope); } /** * Traverses a branch. */ private void traverseBranch(Node n, Node parent) { Token type = n.getToken(); if (type == Token.SCRIPT) { handleScript(n, parent); return; } else if (type == Token.FUNCTION) { handleFunction(n, parent); return; } curNode = n; if (!callback.shouldTraverse(this, n, parent)) { return; } if (type == Token.CLASS) { traverseClass(n); } else if (type == Token.MODULE_BODY) { traverseModule(n); } else if (useBlockScope && NodeUtil.createsBlockScope(n)) { traverseBlockScope(n); } else { traverseChildren(n); } curNode = n; callback.visit(this, n, parent); } /** Traverses a function. */ private void traverseFunction(Node n, Node parent) { final Node fnName = n.getFirstChild(); boolean isFunctionDeclaration = parent != null && NodeUtil.isFunctionDeclaration(n); if (isFunctionDeclaration) { // Function declarations are in the scope containing the declaration. traverseBranch(fnName, n); } curNode = n; pushScope(n); if (!isFunctionDeclaration) { // Function expression names are only accessible within the function // scope. traverseBranch(fnName, n); } final Node args = fnName.getNext(); final Node body = args.getNext(); // Args traverseBranch(args, n); // Body // ES6 "arrow" function may not have a block as a body. traverseBranch(body, n); popScope(); } /** Traverses a class. */ private void traverseClass(Node n) { final Node className = n.getFirstChild(); boolean isClassExpression = NodeUtil.isClassExpression(n); if (!isClassExpression) { // Class declarations are in the scope containing the declaration. traverseBranch(className, n); } curNode = n; pushScope(n); if (isClassExpression) { // Class expression names are only accessible within the function // scope. traverseBranch(className, n); } final Node extendsClause = n.getSecondChild(); final Node body = extendsClause.getNext(); // Extends traverseBranch(extendsClause, n); // Body traverseBranch(body, n); popScope(); } private void traverseChildren(Node n) { for (Node child = n.getFirstChild(); child != null; ) { // child could be replaced, in which case our child node // would no longer point to the true next Node next = child.getNext(); traverseBranch(child, n); child = next; } } /** Traverses a module. */ private void traverseModule(Node n) { pushScope(n); traverseChildren(n); popScope(); } /** Traverses a non-function block. */ private void traverseBlockScope(Node n) { pushScope(n); traverseChildren(n); popScope(); } /** Examines the functions stack for the last instance of a function node. When possible, prefer * this method over NodeUtil.getEnclosingFunction() because this in general looks at less nodes. */ public Node getEnclosingFunction() { Node root = getCfgRoot(); return root.isFunction() ? root : null; } /** Sets the given node as the current scope and pushes the relevant frames on the CFG stacks. */ private void recordScopeRoot(Node node) { if (NodeUtil.isValidCfgRoot(node)) { cfgs.push(node); } } /** Creates a new scope (e.g. when entering a function). */ private void pushScope(Node node) { checkNotNull(curNode); checkNotNull(node); scopeRoots.add(node); recordScopeRoot(node); if (scopeCallback != null) { scopeCallback.enterScope(this); } } /** Creates a new scope (e.g. when entering a function). */ private void pushScope(Scope s) { pushScope(s, false); } /** * Creates a new scope (e.g. when entering a function). * @param quietly Don't fire an enterScope callback. */ private void pushScope(Scope s, boolean quietly) { checkNotNull(curNode); scopes.push(s); recordScopeRoot(s.getRootNode()); if (!quietly && scopeCallback != null) { scopeCallback.enterScope(this); } } private void popScope() { popScope(false); } /** * Pops back to the previous scope (e.g. when leaving a function). * @param quietly Don't fire the exitScope callback. */ private void popScope(boolean quietly) { if (!quietly && scopeCallback != null) { scopeCallback.exitScope(this); } Node scopeRoot; int roots = scopeRoots.size(); if (roots > 0) { scopeRoot = scopeRoots.remove(roots - 1); } else { scopeRoot = scopes.pop().getRootNode(); } if (NodeUtil.isValidCfgRoot(scopeRoot)) { cfgs.pop(); } } /** Gets the current scope. */ public Scope getScope() { Scope scope = scopes.peek(); for (int i = 0; i < scopeRoots.size(); i++) { scope = scopeCreator.createScope(scopeRoots.get(i), scope); scopes.push(scope); } scopeRoots.clear(); // No need to call compiler.setScope; the top scopeRoot is now the top scope return scope; } public boolean isHoistScope() { return Scope.isHoistScopeRootNode(getScopeRoot()); } public Node getClosestHoistScopeRoot() { int roots = scopeRoots.size(); for (int i = roots; i > 0; i--) { Node rootNode = scopeRoots.get(i - 1); if (Scope.isHoistScopeRootNode(rootNode)) { return rootNode; } } return scopes.peek().getClosestHoistScope().getRootNode(); } public Scope getClosestHoistScope() { // TODO(moz): This should not call getScope(). We should find the root of the closest hoist // scope and effectively getScope() from there, which avoids scanning inner scopes that might // not be needed. return getScope().getClosestHoistScope(); } public TypedScope getTypedScope() { Scope s = getScope(); checkState(s instanceof TypedScope, "getTypedScope called for untyped traversal"); return (TypedScope) s; } /** Gets the control flow graph for the current JS scope. */ public ControlFlowGraph getControlFlowGraph() { ControlFlowGraph result; Object o = cfgs.peek(); if (o instanceof Node) { Node cfgRoot = (Node) o; ControlFlowAnalysis cfa = new ControlFlowAnalysis(compiler, false, true); cfa.process(null, cfgRoot); result = cfa.getCfg(); cfgs.pop(); cfgs.push(result); } else { result = (ControlFlowGraph) o; } return result; } /** Returns the current scope's root. */ public Node getScopeRoot() { int roots = scopeRoots.size(); if (roots > 0) { return scopeRoots.get(roots - 1); } else { Scope s = scopes.peek(); return s != null ? s.getRootNode() : null; } } private Node getCfgRoot() { Node result; Object o = cfgs.peek(); if (o instanceof Node) { result = (Node) o; } else { result = ((ControlFlowGraph) o).getEntry().getValue(); } return result; } public ScopeCreator getScopeCreator() { return scopeCreator; } /** * Determines whether the traversal is currently in the global scope. Note that this returns false * in a global block scope. */ public boolean inGlobalScope() { return getScopeDepth() == 0; } /** Determines whether the traversal is currently in the scope of the block of a function. */ public boolean inFunctionBlockScope() { Node scopeRoot = getScopeRoot(); return scopeRoot.isNormalBlock() && scopeRoot.getParent().isFunction(); } /** * Determines whether the hoist scope of the current traversal is global. */ public boolean inGlobalHoistScope() { Node cfgRoot = getCfgRoot(); checkState( cfgRoot.isScript() || cfgRoot.isRoot() || cfgRoot.isNormalBlock() || cfgRoot.isFunction() || cfgRoot.isModuleBody(), cfgRoot); return cfgRoot.isScript() || cfgRoot.isRoot() || cfgRoot.isNormalBlock(); } /** * Determines whether the traversal is currently in the global scope. Note that this returns false * in a global block scope. */ public boolean inModuleScope() { return NodeUtil.isModuleScopeRoot(getScopeRoot()); } /** * Determines whether the hoist scope of the current traversal is global. */ public boolean inModuleHoistScope() { Node moduleRoot = getCfgRoot(); if (moduleRoot.isFunction()) { // For wrapped modules, the function block is the module scope root. moduleRoot = moduleRoot.getLastChild(); } return NodeUtil.isModuleScopeRoot(moduleRoot); } int getScopeDepth() { int sum = scopes.size() + scopeRoots.size(); checkState(sum > 0); return sum - 1; // Use 0-based scope depth to be consistent within the compiler } /** Reports a diagnostic (error or warning) */ public void report(Node n, DiagnosticType diagnosticType, String... arguments) { JSError error = JSError.make(n, diagnosticType, arguments); compiler.report(error); } public void reportCodeChange() { Node changeScope = this.currentChangeScope; checkNotNull(changeScope); checkState(NodeUtil.isChangeScopeRoot(changeScope), changeScope); compiler.reportChangeToChangeScope(changeScope); } public void reportCodeChange(Node n) { compiler.reportChangeToEnclosingScope(n); } private static String getSourceName(Node n) { String name = n.getSourceFileName(); return nullToEmpty(name); } /** * @param n The current change scope, should be null when the traversal is complete. */ private void setChangeScope(Node n) { this.currentChangeScope = n; } private Node getEnclosingScript(Node n) { while (n != null && !n.isScript()) { n = n.getParent(); } return n; } private void initTraversal(Node traversalRoot) { Node changeScope = NodeUtil.getEnclosingChangeScopeRoot(traversalRoot); setChangeScope(changeScope); Node script = getEnclosingScript(changeScope); if (script != null) { setInputId(script.getInputId(), script.getSourceFileName()); } else { setInputId(null, ""); } } /** * Prefills the scopeRoots stack up to a given spot in the AST. Allows for starting traversal at * any spot while still having correct scope state. */ private void initScopeRoots(Node n) { Deque queuedScopeRoots = new ArrayDeque<>(); while (n != null) { if (isScopeRoot(n)) { queuedScopeRoots.addFirst(n); } n = n.getParent(); } for (Node queuedScopeRoot : queuedScopeRoots) { pushScope(queuedScopeRoot); } } private boolean isScopeRoot(Node n) { if (n.isRoot() && n.getParent() == null) { return true; } else if (n.isFunction()) { return true; } else if (useBlockScope && NodeUtil.createsBlockScope(n)) { return true; } return false; } private void setInputId(InputId id, String sourceName) { inputId = id; this.sourceName = sourceName; compilerInput = null; } InputId getInputId() { return inputId; } /** * Creates a JSError during NodeTraversal. * * @param n Determines the line and char position within the source file name * @param type The DiagnosticType * @param arguments Arguments to be incorporated into the message */ public JSError makeError(Node n, CheckLevel level, DiagnosticType type, String... arguments) { return JSError.make(n, level, type, arguments); } /** * Creates a JSError during NodeTraversal. * * @param n Determines the line and char position within the source file name * @param type The DiagnosticType * @param arguments Arguments to be incorporated into the message */ public JSError makeError(Node n, DiagnosticType type, String... arguments) { return JSError.make(n, type, arguments); } private String getBestSourceFileName(Node n) { return n == null ? sourceName : n.getSourceFileName(); } }