All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.protobuf.nano.CodedOutputByteBufferNano Maven / Gradle / Ivy

Go to download

Protocol Buffers are a way of encoding structured data in an efficient yet extensible format.

There is a newer version: 3.2.0rc2
Show newest version
// Protocol Buffers - Google's data interchange format
// Copyright 2013 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf.nano;

import java.io.IOException;
import java.nio.BufferOverflowException;
import java.nio.ByteBuffer;
import java.nio.ReadOnlyBufferException;

/**
 * Encodes and writes protocol message fields.
 *
 * 

This class contains two kinds of methods: methods that write specific * protocol message constructs and field types (e.g. {@link #writeTag} and * {@link #writeInt32}) and methods that write low-level values (e.g. * {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are * writing encoded protocol messages, you should use the former methods, but if * you are writing some other format of your own design, use the latter. * *

This class is totally unsynchronized. * * @author [email protected] Kenton Varda */ public final class CodedOutputByteBufferNano { /* max bytes per java UTF-16 char in UTF-8 */ private static final int MAX_UTF8_EXPANSION = 3; private final ByteBuffer buffer; private CodedOutputByteBufferNano(final byte[] buffer, final int offset, final int length) { this(ByteBuffer.wrap(buffer, offset, length)); } private CodedOutputByteBufferNano(final ByteBuffer buffer) { this.buffer = buffer; } /** * Create a new {@code CodedOutputStream} that writes directly to the given * byte array. If more bytes are written than fit in the array, * {@link OutOfSpaceException} will be thrown. Writing directly to a flat * array is faster than writing to an {@code OutputStream}. */ public static CodedOutputByteBufferNano newInstance(final byte[] flatArray) { return newInstance(flatArray, 0, flatArray.length); } /** * Create a new {@code CodedOutputStream} that writes directly to the given * byte array slice. If more bytes are written than fit in the slice, * {@link OutOfSpaceException} will be thrown. Writing directly to a flat * array is faster than writing to an {@code OutputStream}. */ public static CodedOutputByteBufferNano newInstance(final byte[] flatArray, final int offset, final int length) { return new CodedOutputByteBufferNano(flatArray, offset, length); } // ----------------------------------------------------------------- /** Write a {@code double} field, including tag, to the stream. */ public void writeDouble(final int fieldNumber, final double value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); writeDoubleNoTag(value); } /** Write a {@code float} field, including tag, to the stream. */ public void writeFloat(final int fieldNumber, final float value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); writeFloatNoTag(value); } /** Write a {@code uint64} field, including tag, to the stream. */ public void writeUInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeUInt64NoTag(value); } /** Write an {@code int64} field, including tag, to the stream. */ public void writeInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeInt64NoTag(value); } /** Write an {@code int32} field, including tag, to the stream. */ public void writeInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeInt32NoTag(value); } /** Write a {@code fixed64} field, including tag, to the stream. */ public void writeFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); writeFixed64NoTag(value); } /** Write a {@code fixed32} field, including tag, to the stream. */ public void writeFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); writeFixed32NoTag(value); } /** Write a {@code bool} field, including tag, to the stream. */ public void writeBool(final int fieldNumber, final boolean value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeBoolNoTag(value); } /** Write a {@code string} field, including tag, to the stream. */ public void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } /** Write a {@code group} field, including tag, to the stream. */ public void writeGroup(final int fieldNumber, final MessageNano value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_START_GROUP); writeGroupNoTag(value); writeTag(fieldNumber, WireFormatNano.WIRETYPE_END_GROUP); } /** Write an embedded message field, including tag, to the stream. */ public void writeMessage(final int fieldNumber, final MessageNano value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } /** Write a {@code bytes} field, including tag, to the stream. */ public void writeBytes(final int fieldNumber, final byte[] value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } /** Write a {@code uint32} field, including tag, to the stream. */ public void writeUInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeUInt32NoTag(value); } /** * Write an enum field, including tag, to the stream. Caller is responsible * for converting the enum value to its numeric value. */ public void writeEnum(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeEnumNoTag(value); } /** Write an {@code sfixed32} field, including tag, to the stream. */ public void writeSFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32); writeSFixed32NoTag(value); } /** Write an {@code sfixed64} field, including tag, to the stream. */ public void writeSFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64); writeSFixed64NoTag(value); } /** Write an {@code sint32} field, including tag, to the stream. */ public void writeSInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeSInt32NoTag(value); } /** Write an {@code sint64} field, including tag, to the stream. */ public void writeSInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT); writeSInt64NoTag(value); } /** * Write a MessageSet extension field to the stream. For historical reasons, * the wire format differs from normal fields. */ // public void writeMessageSetExtension(final int fieldNumber, // final MessageMicro value) // throws IOException { // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP); // writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber); // writeMessage(WireFormatMicro.MESSAGE_SET_MESSAGE, value); // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP); // } /** * Write an unparsed MessageSet extension field to the stream. For * historical reasons, the wire format differs from normal fields. */ // public void writeRawMessageSetExtension(final int fieldNumber, // final ByteStringMicro value) // throws IOException { // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP); // writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber); // writeBytes(WireFormatMicro.MESSAGE_SET_MESSAGE, value); // writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP); // } // ----------------------------------------------------------------- /** Write a {@code double} field to the stream. */ public void writeDoubleNoTag(final double value) throws IOException { writeRawLittleEndian64(Double.doubleToLongBits(value)); } /** Write a {@code float} field to the stream. */ public void writeFloatNoTag(final float value) throws IOException { writeRawLittleEndian32(Float.floatToIntBits(value)); } /** Write a {@code uint64} field to the stream. */ public void writeUInt64NoTag(final long value) throws IOException { writeRawVarint64(value); } /** Write an {@code int64} field to the stream. */ public void writeInt64NoTag(final long value) throws IOException { writeRawVarint64(value); } /** Write an {@code int32} field to the stream. */ public void writeInt32NoTag(final int value) throws IOException { if (value >= 0) { writeRawVarint32(value); } else { // Must sign-extend. writeRawVarint64(value); } } /** Write a {@code fixed64} field to the stream. */ public void writeFixed64NoTag(final long value) throws IOException { writeRawLittleEndian64(value); } /** Write a {@code fixed32} field to the stream. */ public void writeFixed32NoTag(final int value) throws IOException { writeRawLittleEndian32(value); } /** Write a {@code bool} field to the stream. */ public void writeBoolNoTag(final boolean value) throws IOException { writeRawByte(value ? 1 : 0); } /** Write a {@code string} field to the stream. */ public void writeStringNoTag(final String value) throws IOException { // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()), // and at most 3 times of it. Optimize for the case where we know this length results in a // constant varint length - saves measuring length of the string. try { final int minLengthVarIntSize = computeRawVarint32Size(value.length()); final int maxLengthVarIntSize = computeRawVarint32Size(value.length() * MAX_UTF8_EXPANSION); if (minLengthVarIntSize == maxLengthVarIntSize) { int oldPosition = buffer.position(); // Buffer.position, when passed a position that is past its limit, throws // IllegalArgumentException, and this class is documented to throw // OutOfSpaceException instead. if (buffer.remaining() < minLengthVarIntSize) { throw new OutOfSpaceException(oldPosition + minLengthVarIntSize, buffer.limit()); } buffer.position(oldPosition + minLengthVarIntSize); encode(value, buffer); int newPosition = buffer.position(); buffer.position(oldPosition); writeRawVarint32(newPosition - oldPosition - minLengthVarIntSize); buffer.position(newPosition); } else { writeRawVarint32(encodedLength(value)); encode(value, buffer); } } catch (BufferOverflowException e) { final OutOfSpaceException outOfSpaceException = new OutOfSpaceException(buffer.position(), buffer.limit()); outOfSpaceException.initCause(e); throw outOfSpaceException; } } // These UTF-8 handling methods are copied from Guava's Utf8 class. /** * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string, * this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in * both time and space. * * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired * surrogates) */ private static int encodedLength(CharSequence sequence) { // Warning to maintainers: this implementation is highly optimized. int utf16Length = sequence.length(); int utf8Length = utf16Length; int i = 0; // This loop optimizes for pure ASCII. while (i < utf16Length && sequence.charAt(i) < 0x80) { i++; } // This loop optimizes for chars less than 0x800. for (; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += ((0x7f - c) >>> 31); // branch free! } else { utf8Length += encodedLengthGeneral(sequence, i); break; } } if (utf8Length < utf16Length) { // Necessary and sufficient condition for overflow because of maximum 3x expansion throw new IllegalArgumentException("UTF-8 length does not fit in int: " + (utf8Length + (1L << 32))); } return utf8Length; } private static int encodedLengthGeneral(CharSequence sequence, int start) { int utf16Length = sequence.length(); int utf8Length = 0; for (int i = start; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += (0x7f - c) >>> 31; // branch free! } else { utf8Length += 2; // jdk7+: if (Character.isSurrogate(c)) { if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) { // Check that we have a well-formed surrogate pair. int cp = Character.codePointAt(sequence, i); if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) { throw new IllegalArgumentException("Unpaired surrogate at index " + i); } i++; } } } return utf8Length; } /** * Encodes {@code sequence} into UTF-8, in {@code byteBuffer}. For a string, this method is * equivalent to {@code buffer.put(string.getBytes(UTF_8))}, but is more efficient in both time * and space. Bytes are written starting at the current position. This method requires paired * surrogates, and therefore does not support chunking. * *

To ensure sufficient space in the output buffer, either call {@link #encodedLength} to * compute the exact amount needed, or leave room for {@code 3 * sequence.length()}, which is the * largest possible number of bytes that any input can be encoded to. * * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired * surrogates) * @throws BufferOverflowException if {@code sequence} encoded in UTF-8 does not fit in * {@code byteBuffer}'s remaining space. * @throws ReadOnlyBufferException if {@code byteBuffer} is a read-only buffer. */ private static void encode(CharSequence sequence, ByteBuffer byteBuffer) { if (byteBuffer.isReadOnly()) { throw new ReadOnlyBufferException(); } else if (byteBuffer.hasArray()) { try { int encoded = encode(sequence, byteBuffer.array(), byteBuffer.arrayOffset() + byteBuffer.position(), byteBuffer.remaining()); byteBuffer.position(encoded - byteBuffer.arrayOffset()); } catch (ArrayIndexOutOfBoundsException e) { BufferOverflowException boe = new BufferOverflowException(); boe.initCause(e); throw boe; } } else { encodeDirect(sequence, byteBuffer); } } private static void encodeDirect(CharSequence sequence, ByteBuffer byteBuffer) { int utf16Length = sequence.length(); for (int i = 0; i < utf16Length; i++) { final char c = sequence.charAt(i); if (c < 0x80) { // ASCII byteBuffer.put((byte) c); } else if (c < 0x800) { // 11 bits, two UTF-8 bytes byteBuffer.put((byte) ((0xF << 6) | (c >>> 6))); byteBuffer.put((byte) (0x80 | (0x3F & c))); } else if (c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) { // Maximium single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes byteBuffer.put((byte) ((0xF << 5) | (c >>> 12))); byteBuffer.put((byte) (0x80 | (0x3F & (c >>> 6)))); byteBuffer.put((byte) (0x80 | (0x3F & c))); } else { final char low; if (i + 1 == sequence.length() || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) { throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1)); } int codePoint = Character.toCodePoint(c, low); byteBuffer.put((byte) ((0xF << 4) | (codePoint >>> 18))); byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 12)))); byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 6)))); byteBuffer.put((byte) (0x80 | (0x3F & codePoint))); } } } private static int encode(CharSequence sequence, byte[] bytes, int offset, int length) { int utf16Length = sequence.length(); int j = offset; int i = 0; int limit = offset + length; // Designed to take advantage of // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination for (char c; i < utf16Length && i + j < limit && (c = sequence.charAt(i)) < 0x80; i++) { bytes[j + i] = (byte) c; } if (i == utf16Length) { return j + utf16Length; } j += i; for (char c; i < utf16Length; i++) { c = sequence.charAt(i); if (c < 0x80 && j < limit) { bytes[j++] = (byte) c; } else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes bytes[j++] = (byte) ((0xF << 6) | (c >>> 6)); bytes[j++] = (byte) (0x80 | (0x3F & c)); } else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) { // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes bytes[j++] = (byte) ((0xF << 5) | (c >>> 12)); bytes[j++] = (byte) (0x80 | (0x3F & (c >>> 6))); bytes[j++] = (byte) (0x80 | (0x3F & c)); } else if (j <= limit - 4) { // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8 bytes final char low; if (i + 1 == sequence.length() || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) { throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1)); } int codePoint = Character.toCodePoint(c, low); bytes[j++] = (byte) ((0xF << 4) | (codePoint >>> 18)); bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12))); bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6))); bytes[j++] = (byte) (0x80 | (0x3F & codePoint)); } else { throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j); } } return j; } // End guava UTF-8 methods /** Write a {@code group} field to the stream. */ public void writeGroupNoTag(final MessageNano value) throws IOException { value.writeTo(this); } /** Write an embedded message field to the stream. */ public void writeMessageNoTag(final MessageNano value) throws IOException { writeRawVarint32(value.getCachedSize()); value.writeTo(this); } /** Write a {@code bytes} field to the stream. */ public void writeBytesNoTag(final byte[] value) throws IOException { writeRawVarint32(value.length); writeRawBytes(value); } /** Write a {@code uint32} field to the stream. */ public void writeUInt32NoTag(final int value) throws IOException { writeRawVarint32(value); } /** * Write an enum field to the stream. Caller is responsible * for converting the enum value to its numeric value. */ public void writeEnumNoTag(final int value) throws IOException { writeRawVarint32(value); } /** Write an {@code sfixed32} field to the stream. */ public void writeSFixed32NoTag(final int value) throws IOException { writeRawLittleEndian32(value); } /** Write an {@code sfixed64} field to the stream. */ public void writeSFixed64NoTag(final long value) throws IOException { writeRawLittleEndian64(value); } /** Write an {@code sint32} field to the stream. */ public void writeSInt32NoTag(final int value) throws IOException { writeRawVarint32(encodeZigZag32(value)); } /** Write an {@code sint64} field to the stream. */ public void writeSInt64NoTag(final long value) throws IOException { writeRawVarint64(encodeZigZag64(value)); } // ================================================================= /** * Compute the number of bytes that would be needed to encode a * {@code double} field, including tag. */ public static int computeDoubleSize(final int fieldNumber, final double value) { return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code float} field, including tag. */ public static int computeFloatSize(final int fieldNumber, final float value) { return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code uint64} field, including tag. */ public static int computeUInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int64} field, including tag. */ public static int computeInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int32} field, including tag. */ public static int computeInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code fixed64} field, including tag. */ public static int computeFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code fixed32} field, including tag. */ public static int computeFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code bool} field, including tag. */ public static int computeBoolSize(final int fieldNumber, final boolean value) { return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code string} field, including tag. */ public static int computeStringSize(final int fieldNumber, final String value) { return computeTagSize(fieldNumber) + computeStringSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code group} field, including tag. */ public static int computeGroupSize(final int fieldNumber, final MessageNano value) { return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * embedded message field, including tag. */ public static int computeMessageSize(final int fieldNumber, final MessageNano value) { return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code bytes} field, including tag. */ public static int computeBytesSize(final int fieldNumber, final byte[] value) { return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code uint32} field, including tag. */ public static int computeUInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * enum field, including tag. Caller is responsible for converting the * enum value to its numeric value. */ public static int computeEnumSize(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed32} field, including tag. */ public static int computeSFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed64} field, including tag. */ public static int computeSFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sint32} field, including tag. */ public static int computeSInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sint64} field, including tag. */ public static int computeSInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * MessageSet extension to the stream. For historical reasons, * the wire format differs from normal fields. */ // public static int computeMessageSetExtensionSize( // final int fieldNumber, final MessageMicro value) { // return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 + // computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) + // computeMessageSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value); // } /** * Compute the number of bytes that would be needed to encode an * unparsed MessageSet extension field to the stream. For * historical reasons, the wire format differs from normal fields. */ // public static int computeRawMessageSetExtensionSize( // final int fieldNumber, final ByteStringMicro value) { // return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 + // computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) + // computeBytesSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value); // } // ----------------------------------------------------------------- /** * Compute the number of bytes that would be needed to encode a * {@code double} field, including tag. */ public static int computeDoubleSizeNoTag(final double value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code float} field, including tag. */ public static int computeFloatSizeNoTag(final float value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code uint64} field, including tag. */ public static int computeUInt64SizeNoTag(final long value) { return computeRawVarint64Size(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int64} field, including tag. */ public static int computeInt64SizeNoTag(final long value) { return computeRawVarint64Size(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int32} field, including tag. */ public static int computeInt32SizeNoTag(final int value) { if (value >= 0) { return computeRawVarint32Size(value); } else { // Must sign-extend. return 10; } } /** * Compute the number of bytes that would be needed to encode a * {@code fixed64} field. */ public static int computeFixed64SizeNoTag(final long value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code fixed32} field. */ public static int computeFixed32SizeNoTag(final int value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code bool} field. */ public static int computeBoolSizeNoTag(final boolean value) { return 1; } /** * Compute the number of bytes that would be needed to encode a * {@code string} field. */ public static int computeStringSizeNoTag(final String value) { final int length = encodedLength(value); return computeRawVarint32Size(length) + length; } /** * Compute the number of bytes that would be needed to encode a * {@code group} field. */ public static int computeGroupSizeNoTag(final MessageNano value) { return value.getSerializedSize(); } /** * Compute the number of bytes that would be needed to encode an embedded * message field. */ public static int computeMessageSizeNoTag(final MessageNano value) { final int size = value.getSerializedSize(); return computeRawVarint32Size(size) + size; } /** * Compute the number of bytes that would be needed to encode a * {@code bytes} field. */ public static int computeBytesSizeNoTag(final byte[] value) { return computeRawVarint32Size(value.length) + value.length; } /** * Compute the number of bytes that would be needed to encode a * {@code uint32} field. */ public static int computeUInt32SizeNoTag(final int value) { return computeRawVarint32Size(value); } /** * Compute the number of bytes that would be needed to encode an enum field. * Caller is responsible for converting the enum value to its numeric value. */ public static int computeEnumSizeNoTag(final int value) { return computeRawVarint32Size(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed32} field. */ public static int computeSFixed32SizeNoTag(final int value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed64} field. */ public static int computeSFixed64SizeNoTag(final long value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode an * {@code sint32} field. */ public static int computeSInt32SizeNoTag(final int value) { return computeRawVarint32Size(encodeZigZag32(value)); } /** * Compute the number of bytes that would be needed to encode an * {@code sint64} field. */ public static int computeSInt64SizeNoTag(final long value) { return computeRawVarint64Size(encodeZigZag64(value)); } // ================================================================= /** * If writing to a flat array, return the space left in the array. * Otherwise, throws {@code UnsupportedOperationException}. */ public int spaceLeft() { return buffer.remaining(); } /** * Verifies that {@link #spaceLeft()} returns zero. It's common to create * a byte array that is exactly big enough to hold a message, then write to * it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()} * after writing verifies that the message was actually as big as expected, * which can help catch bugs. */ public void checkNoSpaceLeft() { if (spaceLeft() != 0) { throw new IllegalStateException( "Did not write as much data as expected."); } } /** * Returns the position within the internal buffer. */ public int position() { return buffer.position(); } /** * Resets the position within the internal buffer to zero. * * @see #position * @see #spaceLeft */ public void reset() { buffer.clear(); } /** * If you create a CodedOutputStream around a simple flat array, you must * not attempt to write more bytes than the array has space. Otherwise, * this exception will be thrown. */ public static class OutOfSpaceException extends IOException { private static final long serialVersionUID = -6947486886997889499L; OutOfSpaceException(int position, int limit) { super("CodedOutputStream was writing to a flat byte array and ran " + "out of space (pos " + position + " limit " + limit + ")."); } } /** Write a single byte. */ public void writeRawByte(final byte value) throws IOException { if (!buffer.hasRemaining()) { // We're writing to a single buffer. throw new OutOfSpaceException(buffer.position(), buffer.limit()); } buffer.put(value); } /** Write a single byte, represented by an integer value. */ public void writeRawByte(final int value) throws IOException { writeRawByte((byte) value); } /** Write an array of bytes. */ public void writeRawBytes(final byte[] value) throws IOException { writeRawBytes(value, 0, value.length); } /** Write part of an array of bytes. */ public void writeRawBytes(final byte[] value, int offset, int length) throws IOException { if (buffer.remaining() >= length) { buffer.put(value, offset, length); } else { // We're writing to a single buffer. throw new OutOfSpaceException(buffer.position(), buffer.limit()); } } /** Encode and write a tag. */ public void writeTag(final int fieldNumber, final int wireType) throws IOException { writeRawVarint32(WireFormatNano.makeTag(fieldNumber, wireType)); } /** Compute the number of bytes that would be needed to encode a tag. */ public static int computeTagSize(final int fieldNumber) { return computeRawVarint32Size(WireFormatNano.makeTag(fieldNumber, 0)); } /** * Encode and write a varint. {@code value} is treated as * unsigned, so it won't be sign-extended if negative. */ public void writeRawVarint32(int value) throws IOException { while (true) { if ((value & ~0x7F) == 0) { writeRawByte(value); return; } else { writeRawByte((value & 0x7F) | 0x80); value >>>= 7; } } } /** * Compute the number of bytes that would be needed to encode a varint. * {@code value} is treated as unsigned, so it won't be sign-extended if * negative. */ public static int computeRawVarint32Size(final int value) { if ((value & (0xffffffff << 7)) == 0) return 1; if ((value & (0xffffffff << 14)) == 0) return 2; if ((value & (0xffffffff << 21)) == 0) return 3; if ((value & (0xffffffff << 28)) == 0) return 4; return 5; } /** Encode and write a varint. */ public void writeRawVarint64(long value) throws IOException { while (true) { if ((value & ~0x7FL) == 0) { writeRawByte((int)value); return; } else { writeRawByte(((int)value & 0x7F) | 0x80); value >>>= 7; } } } /** Compute the number of bytes that would be needed to encode a varint. */ public static int computeRawVarint64Size(final long value) { if ((value & (0xffffffffffffffffL << 7)) == 0) return 1; if ((value & (0xffffffffffffffffL << 14)) == 0) return 2; if ((value & (0xffffffffffffffffL << 21)) == 0) return 3; if ((value & (0xffffffffffffffffL << 28)) == 0) return 4; if ((value & (0xffffffffffffffffL << 35)) == 0) return 5; if ((value & (0xffffffffffffffffL << 42)) == 0) return 6; if ((value & (0xffffffffffffffffL << 49)) == 0) return 7; if ((value & (0xffffffffffffffffL << 56)) == 0) return 8; if ((value & (0xffffffffffffffffL << 63)) == 0) return 9; return 10; } /** Write a little-endian 32-bit integer. */ public void writeRawLittleEndian32(final int value) throws IOException { writeRawByte((value ) & 0xFF); writeRawByte((value >> 8) & 0xFF); writeRawByte((value >> 16) & 0xFF); writeRawByte((value >> 24) & 0xFF); } public static final int LITTLE_ENDIAN_32_SIZE = 4; /** Write a little-endian 64-bit integer. */ public void writeRawLittleEndian64(final long value) throws IOException { writeRawByte((int)(value ) & 0xFF); writeRawByte((int)(value >> 8) & 0xFF); writeRawByte((int)(value >> 16) & 0xFF); writeRawByte((int)(value >> 24) & 0xFF); writeRawByte((int)(value >> 32) & 0xFF); writeRawByte((int)(value >> 40) & 0xFF); writeRawByte((int)(value >> 48) & 0xFF); writeRawByte((int)(value >> 56) & 0xFF); } public static final int LITTLE_ENDIAN_64_SIZE = 8; /** * Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers * into values that can be efficiently encoded with varint. (Otherwise, * negative values must be sign-extended to 64 bits to be varint encoded, * thus always taking 10 bytes on the wire.) * * @param n A signed 32-bit integer. * @return An unsigned 32-bit integer, stored in a signed int because * Java has no explicit unsigned support. */ public static int encodeZigZag32(final int n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 31); } /** * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers * into values that can be efficiently encoded with varint. (Otherwise, * negative values must be sign-extended to 64 bits to be varint encoded, * thus always taking 10 bytes on the wire.) * * @param n A signed 64-bit integer. * @return An unsigned 64-bit integer, stored in a signed int because * Java has no explicit unsigned support. */ public static long encodeZigZag64(final long n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 63); } static int computeFieldSize(int number, int type, Object object) { switch (type) { case InternalNano.TYPE_BOOL: return computeBoolSize(number, (Boolean) object); case InternalNano.TYPE_BYTES: return computeBytesSize(number, (byte[]) object); case InternalNano.TYPE_STRING: return computeStringSize(number, (String) object); case InternalNano.TYPE_FLOAT: return computeFloatSize(number, (Float) object); case InternalNano.TYPE_DOUBLE: return computeDoubleSize(number, (Double) object); case InternalNano.TYPE_ENUM: return computeEnumSize(number, (Integer) object); case InternalNano.TYPE_FIXED32: return computeFixed32Size(number, (Integer) object); case InternalNano.TYPE_INT32: return computeInt32Size(number, (Integer) object); case InternalNano.TYPE_UINT32: return computeUInt32Size(number, (Integer) object); case InternalNano.TYPE_SINT32: return computeSInt32Size(number, (Integer) object); case InternalNano.TYPE_SFIXED32: return computeSFixed32Size(number, (Integer) object); case InternalNano.TYPE_INT64: return computeInt64Size(number, (Long) object); case InternalNano.TYPE_UINT64: return computeUInt64Size(number, (Long) object); case InternalNano.TYPE_SINT64: return computeSInt64Size(number, (Long) object); case InternalNano.TYPE_FIXED64: return computeFixed64Size(number, (Long) object); case InternalNano.TYPE_SFIXED64: return computeSFixed64Size(number, (Long) object); case InternalNano.TYPE_MESSAGE: return computeMessageSize(number, (MessageNano) object); case InternalNano.TYPE_GROUP: return computeGroupSize(number, (MessageNano) object); default: throw new IllegalArgumentException("Unknown type: " + type); } } void writeField(int number, int type, Object value) throws IOException { switch (type) { case InternalNano.TYPE_DOUBLE: Double doubleValue = (Double) value; writeDouble(number, doubleValue); break; case InternalNano.TYPE_FLOAT: Float floatValue = (Float) value; writeFloat(number, floatValue); break; case InternalNano.TYPE_INT64: Long int64Value = (Long) value; writeInt64(number, int64Value); break; case InternalNano.TYPE_UINT64: Long uint64Value = (Long) value; writeUInt64(number, uint64Value); break; case InternalNano.TYPE_INT32: Integer int32Value = (Integer) value; writeInt32(number, int32Value); break; case InternalNano.TYPE_FIXED64: Long fixed64Value = (Long) value; writeFixed64(number, fixed64Value); break; case InternalNano.TYPE_FIXED32: Integer fixed32Value = (Integer) value; writeFixed32(number, fixed32Value); break; case InternalNano.TYPE_BOOL: Boolean boolValue = (Boolean) value; writeBool(number, boolValue); break; case InternalNano.TYPE_STRING: String stringValue = (String) value; writeString(number, stringValue); break; case InternalNano.TYPE_BYTES: byte[] bytesValue = (byte[]) value; writeBytes(number, bytesValue); break; case InternalNano.TYPE_UINT32: Integer uint32Value = (Integer) value; writeUInt32(number, uint32Value); break; case InternalNano.TYPE_ENUM: Integer enumValue = (Integer) value; writeEnum(number, enumValue); break; case InternalNano.TYPE_SFIXED32: Integer sfixed32Value = (Integer) value; writeSFixed32(number, sfixed32Value); break; case InternalNano.TYPE_SFIXED64: Long sfixed64Value = (Long) value; writeSFixed64(number, sfixed64Value); break; case InternalNano.TYPE_SINT32: Integer sint32Value = (Integer) value; writeSInt32(number, sint32Value); break; case InternalNano.TYPE_SINT64: Long sint64Value = (Long) value; writeSInt64(number, sint64Value); break; case InternalNano.TYPE_MESSAGE: MessageNano messageValue = (MessageNano) value; writeMessage(number, messageValue); break; case InternalNano.TYPE_GROUP: MessageNano groupValue = (MessageNano) value; writeGroup(number, groupValue); break; default: throw new IOException("Unknown type: " + type); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy