com.google.protobuf.util.Timestamps Maven / Gradle / Ivy
Show all versions of protobuf-java-util Show documentation
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
package com.google.protobuf.util;
import static com.google.common.math.IntMath.checkedAdd;
import static com.google.common.math.IntMath.checkedSubtract;
import static com.google.common.math.LongMath.checkedAdd;
import static com.google.common.math.LongMath.checkedMultiply;
import static com.google.common.math.LongMath.checkedSubtract;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.CompileTimeConstant;
import com.google.j2objc.annotations.J2ObjCIncompatible;
import com.google.protobuf.Duration;
import com.google.protobuf.Timestamp;
import java.io.Serializable;
import java.lang.reflect.Method;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Comparator;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.Locale;
import java.util.TimeZone;
import javax.annotation.Nullable;
/**
* Utilities to help create/manipulate {@code protobuf/timestamp.proto}. All operations throw an
* {@link IllegalArgumentException} if the input(s) are not {@linkplain #isValid(Timestamp) valid}.
*/
public final class Timestamps {
// Timestamp for "0001-01-01T00:00:00Z"
static final long TIMESTAMP_SECONDS_MIN = -62135596800L;
// Timestamp for "9999-12-31T23:59:59Z"
static final long TIMESTAMP_SECONDS_MAX = 253402300799L;
static final int NANOS_PER_SECOND = 1000000000;
static final int NANOS_PER_MILLISECOND = 1000000;
static final int NANOS_PER_MICROSECOND = 1000;
static final int MILLIS_PER_SECOND = 1000;
static final int MICROS_PER_SECOND = 1000000;
/** A constant holding the minimum valid {@link Timestamp}, {@code 0001-01-01T00:00:00Z}. */
public static final Timestamp MIN_VALUE =
Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MIN).setNanos(0).build();
/**
* A constant holding the maximum valid {@link Timestamp}, {@code 9999-12-31T23:59:59.999999999Z}.
*/
public static final Timestamp MAX_VALUE =
Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MAX).setNanos(999999999).build();
/**
* A constant holding the {@link Timestamp} of epoch time, {@code 1970-01-01T00:00:00.000000000Z}.
*/
public static final Timestamp EPOCH = Timestamp.newBuilder().setSeconds(0).setNanos(0).build();
private static final ThreadLocal timestampFormat =
new ThreadLocal() {
@Override
protected SimpleDateFormat initialValue() {
return createTimestampFormat();
}
};
private static SimpleDateFormat createTimestampFormat() {
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.ENGLISH);
GregorianCalendar calendar = new GregorianCalendar(TimeZone.getTimeZone("UTC"));
// We use Proleptic Gregorian Calendar (i.e., Gregorian calendar extends
// backwards to year one) for timestamp formatting.
calendar.setGregorianChange(new Date(Long.MIN_VALUE));
sdf.setCalendar(calendar);
return sdf;
}
private Timestamps() {}
private static enum TimestampComparator implements Comparator, Serializable {
INSTANCE;
@Override
public int compare(Timestamp t1, Timestamp t2) {
checkValid(t1);
checkValid(t2);
int secDiff = Long.compare(t1.getSeconds(), t2.getSeconds());
return (secDiff != 0) ? secDiff : Integer.compare(t1.getNanos(), t2.getNanos());
}
}
/**
* Returns a {@link Comparator} for {@link Timestamp Timestamps} which sorts in increasing
* chronological order. Nulls and invalid {@link Timestamp Timestamps} are not allowed (see {@link
* #isValid}). The returned comparator is serializable.
*/
public static Comparator comparator() {
return TimestampComparator.INSTANCE;
}
/**
* Compares two timestamps. The value returned is identical to what would be returned by: {@code
* Timestamps.comparator().compare(x, y)}.
*
* @return the value {@code 0} if {@code x == y}; a value less than {@code 0} if {@code x < y};
* and a value greater than {@code 0} if {@code x > y}
*/
public static int compare(Timestamp x, Timestamp y) {
return TimestampComparator.INSTANCE.compare(x, y);
}
/**
* Returns true if the given {@link Timestamp} is valid. The {@code seconds} value must be in the
* range [-62,135,596,800, +253,402,300,799] (i.e., between 0001-01-01T00:00:00Z and
* 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range [0, +999,999,999].
*
* Note: Negative second values with fractional seconds must still have non-negative
* nanos values that count forward in time.
*/
public static boolean isValid(Timestamp timestamp) {
return isValid(timestamp.getSeconds(), timestamp.getNanos());
}
/**
* Returns true if the given number of seconds and nanos is a valid {@link Timestamp}. The {@code
* seconds} value must be in the range [-62,135,596,800, +253,402,300,799] (i.e., between
* 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range
* [0, +999,999,999].
*
*
Note: Negative second values with fractional seconds must still have non-negative
* nanos values that count forward in time.
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static boolean isValid(long seconds, int nanos) {
if (!isValidSeconds(seconds)) {
return false;
}
if (nanos < 0 || nanos >= NANOS_PER_SECOND) {
return false;
}
return true;
}
/**
* Returns true if the given number of seconds is valid, if combined with a valid number of nanos.
* The {@code seconds} value must be in the range [-62,135,596,800, +253,402,300,799] (i.e.,
* between 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z).
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
private static boolean isValidSeconds(long seconds) {
return seconds >= TIMESTAMP_SECONDS_MIN && seconds <= TIMESTAMP_SECONDS_MAX;
}
/** Throws an {@link IllegalArgumentException} if the given {@link Timestamp} is not valid. */
@CanIgnoreReturnValue
public static Timestamp checkValid(Timestamp timestamp) {
long seconds = timestamp.getSeconds();
int nanos = timestamp.getNanos();
if (!isValid(seconds, nanos)) {
throw new IllegalArgumentException(
String.format(
"Timestamp is not valid. See proto definition for valid values. "
+ "Seconds (%s) must be in range [-62,135,596,800, +253,402,300,799]. "
+ "Nanos (%s) must be in range [0, +999,999,999].",
seconds, nanos));
}
return timestamp;
}
/**
* Builds the given builder and throws an {@link IllegalArgumentException} if it is not valid. See
* {@link #checkValid(Timestamp)}.
*
* @return A valid, built {@link Timestamp}.
*/
public static Timestamp checkValid(Timestamp.Builder timestampBuilder) {
return checkValid(timestampBuilder.build());
}
/**
* Convert Timestamp to RFC 3339 date string format. The output will always be Z-normalized and
* uses 0, 3, 6 or 9 fractional digits as required to represent the exact value. Note that
* Timestamp can only represent time from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z.
* See https://www.ietf.org/rfc/rfc3339.txt
*
*
Example of generated format: "1972-01-01T10:00:20.021Z"
*
* @return The string representation of the given timestamp.
* @throws IllegalArgumentException if the given timestamp is not in the valid range.
*/
public static String toString(Timestamp timestamp) {
checkValid(timestamp);
long seconds = timestamp.getSeconds();
int nanos = timestamp.getNanos();
StringBuilder result = new StringBuilder();
// Format the seconds part.
Date date = new Date(seconds * MILLIS_PER_SECOND);
result.append(timestampFormat.get().format(date));
// Format the nanos part.
if (nanos != 0) {
result.append(".");
result.append(formatNanos(nanos));
}
result.append("Z");
return result.toString();
}
/**
* Parse from RFC 3339 date string to Timestamp. This method accepts all outputs of {@link
* #toString(Timestamp)} and it also accepts any fractional digits (or none) and any offset as
* long as they fit into nano-seconds precision.
*
*
Example of accepted format: "1972-01-01T10:00:20.021-05:00"
*
* @return a Timestamp parsed from the string
* @throws ParseException if parsing fails
*/
public static Timestamp parse(String value) throws ParseException {
int dayOffset = value.indexOf('T');
if (dayOffset == -1) {
throw new ParseException("Failed to parse timestamp: invalid timestamp \"" + value + "\"", 0);
}
int timezoneOffsetPosition = value.indexOf('Z', dayOffset);
if (timezoneOffsetPosition == -1) {
timezoneOffsetPosition = value.indexOf('+', dayOffset);
}
if (timezoneOffsetPosition == -1) {
timezoneOffsetPosition = value.indexOf('-', dayOffset);
}
if (timezoneOffsetPosition == -1) {
throw new ParseException("Failed to parse timestamp: missing valid timezone offset.", 0);
}
// Parse seconds and nanos.
String timeValue = value.substring(0, timezoneOffsetPosition);
String secondValue = timeValue;
String nanoValue = "";
int pointPosition = timeValue.indexOf('.');
if (pointPosition != -1) {
secondValue = timeValue.substring(0, pointPosition);
nanoValue = timeValue.substring(pointPosition + 1);
}
Date date = timestampFormat.get().parse(secondValue);
long seconds = date.getTime() / MILLIS_PER_SECOND;
int nanos = nanoValue.isEmpty() ? 0 : parseNanos(nanoValue);
// Parse timezone offsets.
if (value.charAt(timezoneOffsetPosition) == 'Z') {
if (value.length() != timezoneOffsetPosition + 1) {
throw new ParseException(
"Failed to parse timestamp: invalid trailing data \""
+ value.substring(timezoneOffsetPosition)
+ "\"",
0);
}
} else {
String offsetValue = value.substring(timezoneOffsetPosition + 1);
long offset = parseTimezoneOffset(offsetValue);
if (value.charAt(timezoneOffsetPosition) == '+') {
seconds -= offset;
} else {
seconds += offset;
}
}
try {
return normalizedTimestamp(seconds, nanos);
} catch (IllegalArgumentException e) {
ParseException ex =
new ParseException(
"Failed to parse timestamp " + value + " Timestamp is out of range.", 0);
ex.initCause(e);
throw ex;
}
}
/**
* Parses a string in RFC 3339 format into a {@link Timestamp}.
*
*
Identical to {@link #parse(String)}, but throws an {@link IllegalArgumentException} instead
* of a {@link ParseException} if parsing fails.
*
* @return a {@link Timestamp} parsed from the string
* @throws IllegalArgumentException if parsing fails
*/
public static Timestamp parseUnchecked(@CompileTimeConstant String value) {
try {
return parse(value);
} catch (ParseException e) {
// While `java.time.format.DateTimeParseException` is a more accurate representation of the
// failure, this library is currently not JDK8 ready because of Android dependencies.
throw new IllegalArgumentException(e);
}
}
// the following 3 constants contain references to java.time.Instant methods (if that class is
// available at runtime); otherwise, they are null.
@Nullable private static final Method INSTANT_NOW = instantMethod("now");
@Nullable private static final Method INSTANT_GET_EPOCH_SECOND = instantMethod("getEpochSecond");
@Nullable private static final Method INSTANT_GET_NANO = instantMethod("getNano");
@Nullable
private static Method instantMethod(String methodName) {
try {
return Class.forName("java.time.Instant").getMethod(methodName);
} catch (Exception e) {
return null;
}
}
/**
* Create a {@link Timestamp} using the best-available (in terms of precision) system clock.
*
*
Note: that while this API is convenient, it may harm the testability of your code, as
* you're unable to mock the current time. Instead, you may want to consider injecting a clock
* instance to read the current time.
*/
public static Timestamp now() {
if (INSTANT_NOW != null) {
try {
Object now = INSTANT_NOW.invoke(null);
long epochSecond = (long) INSTANT_GET_EPOCH_SECOND.invoke(now);
int nanoAdjustment = (int) INSTANT_GET_NANO.invoke(now);
return normalizedTimestamp(epochSecond, nanoAdjustment);
} catch (Throwable fallThrough) {
throw new AssertionError(fallThrough);
}
}
// otherwise, fall back on millisecond precision
return fromMillis(System.currentTimeMillis());
}
/** Create a Timestamp from the number of seconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static Timestamp fromSeconds(long seconds) {
return normalizedTimestamp(seconds, 0);
}
/**
* Convert a Timestamp to the number of seconds elapsed from the epoch.
*
*
The result will be rounded down to the nearest second. E.g., if the timestamp represents
* "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 second.
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static long toSeconds(Timestamp timestamp) {
return checkValid(timestamp).getSeconds();
}
/** Create a Timestamp from the number of milliseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static Timestamp fromMillis(long milliseconds) {
return normalizedTimestamp(
milliseconds / MILLIS_PER_SECOND,
(int) (milliseconds % MILLIS_PER_SECOND * NANOS_PER_MILLISECOND));
}
/**
* Create a Timestamp from a {@link Date}. If the {@link Date} is a {@link java.sql.Timestamp},
* full nanonsecond precision is retained.
*
* @throws IllegalArgumentException if the year is before 1 CE or after 9999 CE
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
@J2ObjCIncompatible
public static Timestamp fromDate(Date date) {
if (date instanceof java.sql.Timestamp) {
java.sql.Timestamp sqlTimestamp = (java.sql.Timestamp) date;
long time = sqlTimestamp.getTime();
long integralSeconds =
(time < 0 && time % 1000 != 0)
? time / 1000L - 1
: time / 1000L; // truncate the fractional seconds
return Timestamp.newBuilder()
.setSeconds(integralSeconds)
.setNanos(sqlTimestamp.getNanos())
.build();
} else {
return fromMillis(date.getTime());
}
}
/**
* Convert a Timestamp to the number of milliseconds elapsed from the epoch.
*
*
The result will be rounded down to the nearest millisecond. For instance, if the timestamp
* represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 millisecond.
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static long toMillis(Timestamp timestamp) {
checkValid(timestamp);
return checkedAdd(
checkedMultiply(timestamp.getSeconds(), MILLIS_PER_SECOND),
timestamp.getNanos() / NANOS_PER_MILLISECOND);
}
/** Create a Timestamp from the number of microseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static Timestamp fromMicros(long microseconds) {
return normalizedTimestamp(
microseconds / MICROS_PER_SECOND,
(int) (microseconds % MICROS_PER_SECOND * NANOS_PER_MICROSECOND));
}
/**
* Convert a Timestamp to the number of microseconds elapsed from the epoch.
*
*
The result will be rounded down to the nearest microsecond. E.g., if the timestamp
* represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 microsecond.
*/
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static long toMicros(Timestamp timestamp) {
checkValid(timestamp);
return checkedAdd(
checkedMultiply(timestamp.getSeconds(), MICROS_PER_SECOND),
timestamp.getNanos() / NANOS_PER_MICROSECOND);
}
/** Create a Timestamp from the number of nanoseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static Timestamp fromNanos(long nanoseconds) {
return normalizedTimestamp(
nanoseconds / NANOS_PER_SECOND, (int) (nanoseconds % NANOS_PER_SECOND));
}
/** Convert a Timestamp to the number of nanoseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API
public static long toNanos(Timestamp timestamp) {
checkValid(timestamp);
return checkedAdd(
checkedMultiply(timestamp.getSeconds(), NANOS_PER_SECOND), timestamp.getNanos());
}
/**
* Calculate the difference between two timestamps.
*
*
* @deprecated Do not use this method for new code. Instead, convert to {@link java.time.Instant}
* using {@link com.google.protobuf.util.JavaTimeConversions#toJavaInstant}, do the arithmetic
* there, and convert back using {@link
* com.google.protobuf.util.JavaTimeConversions#toProtoDuration}.
*
*/
@Deprecated // MOE:strip_line
public static Duration between(Timestamp from, Timestamp to) {
checkValid(from);
checkValid(to);
return Durations.normalizedDuration(
checkedSubtract(to.getSeconds(), from.getSeconds()),
checkedSubtract(to.getNanos(), from.getNanos()));
}
/**
* Add a duration to a timestamp.
*
*
* @deprecated Do not use this method for new code. Instead, convert to {@link java.time.Instant}
* and {@link java.time.Duration} using {@link
* com.google.protobuf.util.JavaTimeConversions#toJavaInstant} and {@link
* com.google.protobuf.util.JavaTimeConversions#toJavaDuration}, do the arithmetic there, and
* convert back using {@link com.google.protobuf.util.JavaTimeConversions#toProtoTimestamp}.
*
*/
@Deprecated // MOE:strip_line
public static Timestamp add(Timestamp start, Duration length) {
checkValid(start);
Durations.checkValid(length);
return normalizedTimestamp(
checkedAdd(start.getSeconds(), length.getSeconds()),
checkedAdd(start.getNanos(), length.getNanos()));
}
/**
* Subtract a duration from a timestamp.
*
*
* @deprecated Do not use this method for new code. Instead, convert to {@link java.time.Instant}
* and {@link java.time.Duration} using {@link
* com.google.protobuf.util.JavaTimeConversions#toJavaInstant} and {@link
* com.google.protobuf.util.JavaTimeConversions#toJavaDuration}, do the arithmetic there, and
* convert back using {@link com.google.protobuf.util.JavaTimeConversions#toProtoTimestamp}.
*
*/
@Deprecated // MOE:strip_line
public static Timestamp subtract(Timestamp start, Duration length) {
checkValid(start);
Durations.checkValid(length);
return normalizedTimestamp(
checkedSubtract(start.getSeconds(), length.getSeconds()),
checkedSubtract(start.getNanos(), length.getNanos()));
}
static Timestamp normalizedTimestamp(long seconds, int nanos) {
// This only checks seconds, because nanos can intentionally overflow to increment the seconds
// when normalized.
if (!isValidSeconds(seconds)) {
throw new IllegalArgumentException(
String.format(
"Timestamp is not valid. Input seconds is too large. "
+ "Seconds (%s) must be in range [-62,135,596,800, +253,402,300,799]. ",
seconds));
}
if (nanos <= -NANOS_PER_SECOND || nanos >= NANOS_PER_SECOND) {
seconds = checkedAdd(seconds, nanos / NANOS_PER_SECOND);
nanos = (int) (nanos % NANOS_PER_SECOND);
}
if (nanos < 0) {
nanos =
(int)
(nanos + NANOS_PER_SECOND); // no overflow since nanos is negative (and we're adding)
seconds = checkedSubtract(seconds, 1);
}
Timestamp timestamp = Timestamp.newBuilder().setSeconds(seconds).setNanos(nanos).build();
return checkValid(timestamp);
}
private static long parseTimezoneOffset(String value) throws ParseException {
int pos = value.indexOf(':');
if (pos == -1) {
throw new ParseException("Invalid offset value: " + value, 0);
}
String hours = value.substring(0, pos);
String minutes = value.substring(pos + 1);
try {
return (Long.parseLong(hours) * 60 + Long.parseLong(minutes)) * 60;
} catch (NumberFormatException e) {
ParseException ex = new ParseException("Invalid offset value: " + value, 0);
ex.initCause(e);
throw ex;
}
}
static int parseNanos(String value) throws ParseException {
int result = 0;
for (int i = 0; i < 9; ++i) {
result = result * 10;
if (i < value.length()) {
if (value.charAt(i) < '0' || value.charAt(i) > '9') {
throw new ParseException("Invalid nanoseconds.", 0);
}
result += value.charAt(i) - '0';
}
}
return result;
}
/** Format the nano part of a timestamp or a duration. */
static String formatNanos(int nanos) {
// Determine whether to use 3, 6, or 9 digits for the nano part.
if (nanos % NANOS_PER_MILLISECOND == 0) {
return String.format(Locale.ENGLISH, "%1$03d", nanos / NANOS_PER_MILLISECOND);
} else if (nanos % NANOS_PER_MICROSECOND == 0) {
return String.format(Locale.ENGLISH, "%1$06d", nanos / NANOS_PER_MICROSECOND);
} else {
return String.format(Locale.ENGLISH, "%1$09d", nanos);
}
}
}