All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.protobuf.Utf8 Maven / Gradle / Ivy

Go to download

Core Protocol Buffers library. Protocol Buffers are a way of encoding structured data in an efficient yet extensible format.

There is a newer version: 4.30.1
Show newest version
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

/**
 * A set of low-level, high-performance static utility methods related
 * to the UTF-8 character encoding.  This class has no dependencies
 * outside of the core JDK libraries.
 *
 * 

There are several variants of UTF-8. The one implemented by * this class is the restricted definition of UTF-8 introduced in * Unicode 3.1, which mandates the rejection of "overlong" byte * sequences as well as rejection of 3-byte surrogate codepoint byte * sequences. Note that the UTF-8 decoder included in Oracle's JDK * has been modified to also reject "overlong" byte sequences, but (as * of 2011) still accepts 3-byte surrogate codepoint byte sequences. * *

The byte sequences considered valid by this class are exactly * those that can be roundtrip converted to Strings and back to bytes * using the UTF-8 charset, without loss:

 {@code
 * Arrays.equals(bytes, new String(bytes, Internal.UTF_8).getBytes(Internal.UTF_8))
 * }
* *

See the Unicode Standard,
* Table 3-6. UTF-8 Bit Distribution,
* Table 3-7. Well Formed UTF-8 Byte Sequences. * *

This class supports decoding of partial byte sequences, so that the * bytes in a complete UTF-8 byte sequences can be stored in multiple * segments. Methods typically return {@link #MALFORMED} if the partial * byte sequence is definitely not well-formed, {@link #COMPLETE} if it is * well-formed in the absence of additional input, or if the byte sequence * apparently terminated in the middle of a character, an opaque integer * "state" value containing enough information to decode the character when * passed to a subsequent invocation of a partial decoding method. * * @author [email protected] (Martin Buchholz) */ final class Utf8 { private Utf8() {} /** * Maximum number of bytes per Java UTF-16 char in UTF-8. * @see java.nio.charset.CharsetEncoder#maxBytesPerChar() */ static final int MAX_BYTES_PER_CHAR = 3; /** * State value indicating that the byte sequence is well-formed and * complete (no further bytes are needed to complete a character). */ public static final int COMPLETE = 0; /** * State value indicating that the byte sequence is definitely not * well-formed. */ public static final int MALFORMED = -1; // Other state values include the partial bytes of the incomplete // character to be decoded in the simplest way: we pack the bytes // into the state int in little-endian order. For example: // // int state = byte1 ^ (byte2 << 8) ^ (byte3 << 16); // // Such a state is unpacked thus (note the ~ operation for byte2 to // undo byte1's sign-extension bits): // // int byte1 = (byte) state; // int byte2 = (byte) ~(state >> 8); // int byte3 = (byte) (state >> 16); // // We cannot store a zero byte in the state because it would be // indistinguishable from the absence of a byte. But we don't need // to, because partial bytes must always be negative. When building // a state, we ensure that byte1 is negative and subsequent bytes // are valid trailing bytes. /** * Returns {@code true} if the given byte array is a well-formed * UTF-8 byte sequence. * *

This is a convenience method, equivalent to a call to {@code * isValidUtf8(bytes, 0, bytes.length)}. */ public static boolean isValidUtf8(byte[] bytes) { return isValidUtf8(bytes, 0, bytes.length); } /** * Returns {@code true} if the given byte array slice is a * well-formed UTF-8 byte sequence. The range of bytes to be * checked extends from index {@code index}, inclusive, to {@code * limit}, exclusive. * *

This is a convenience method, equivalent to {@code * partialIsValidUtf8(bytes, index, limit) == Utf8.COMPLETE}. */ public static boolean isValidUtf8(byte[] bytes, int index, int limit) { return partialIsValidUtf8(bytes, index, limit) == COMPLETE; } /** * Tells whether the given byte array slice is a well-formed, * malformed, or incomplete UTF-8 byte sequence. The range of bytes * to be checked extends from index {@code index}, inclusive, to * {@code limit}, exclusive. * * @param state either {@link Utf8#COMPLETE} (if this is the initial decoding * operation) or the value returned from a call to a partial decoding method * for the previous bytes * * @return {@link #MALFORMED} if the partial byte sequence is * definitely not well-formed, {@link #COMPLETE} if it is well-formed * (no additional input needed), or if the byte sequence is * "incomplete", i.e. apparently terminated in the middle of a character, * an opaque integer "state" value containing enough information to * decode the character when passed to a subsequent invocation of a * partial decoding method. */ public static int partialIsValidUtf8( int state, byte[] bytes, int index, int limit) { if (state != COMPLETE) { // The previous decoding operation was incomplete (or malformed). // We look for a well-formed sequence consisting of bytes from // the previous decoding operation (stored in state) together // with bytes from the array slice. // // We expect such "straddler characters" to be rare. if (index >= limit) { // No bytes? No progress. return state; } int byte1 = (byte) state; // byte1 is never ASCII. if (byte1 < (byte) 0xE0) { // two-byte form // Simultaneously checks for illegal trailing-byte in // leading position and overlong 2-byte form. if (byte1 < (byte) 0xC2 || // byte2 trailing-byte test bytes[index++] > (byte) 0xBF) { return MALFORMED; } } else if (byte1 < (byte) 0xF0) { // three-byte form // Get byte2 from saved state or array int byte2 = (byte) ~(state >> 8); if (byte2 == 0) { byte2 = bytes[index++]; if (index >= limit) { return incompleteStateFor(byte1, byte2); } } if (byte2 > (byte) 0xBF || // overlong? 5 most significant bits must not all be zero (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0) || // illegal surrogate codepoint? (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0) || // byte3 trailing-byte test bytes[index++] > (byte) 0xBF) { return MALFORMED; } } else { // four-byte form // Get byte2 and byte3 from saved state or array int byte2 = (byte) ~(state >> 8); int byte3 = 0; if (byte2 == 0) { byte2 = bytes[index++]; if (index >= limit) { return incompleteStateFor(byte1, byte2); } } else { byte3 = (byte) (state >> 16); } if (byte3 == 0) { byte3 = bytes[index++]; if (index >= limit) { return incompleteStateFor(byte1, byte2, byte3); } } // If we were called with state == MALFORMED, then byte1 is 0xFF, // which never occurs in well-formed UTF-8, and so we will return // MALFORMED again below. if (byte2 > (byte) 0xBF || // Check that 1 <= plane <= 16. Tricky optimized form of: // if (byte1 > (byte) 0xF4 || // byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 || // byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F) (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0 || // byte3 trailing-byte test byte3 > (byte) 0xBF || // byte4 trailing-byte test bytes[index++] > (byte) 0xBF) { return MALFORMED; } } } return partialIsValidUtf8(bytes, index, limit); } /** * Tells whether the given byte array slice is a well-formed, * malformed, or incomplete UTF-8 byte sequence. The range of bytes * to be checked extends from index {@code index}, inclusive, to * {@code limit}, exclusive. * *

This is a convenience method, equivalent to a call to {@code * partialIsValidUtf8(Utf8.COMPLETE, bytes, index, limit)}. * * @return {@link #MALFORMED} if the partial byte sequence is * definitely not well-formed, {@link #COMPLETE} if it is well-formed * (no additional input needed), or if the byte sequence is * "incomplete", i.e. apparently terminated in the middle of a character, * an opaque integer "state" value containing enough information to * decode the character when passed to a subsequent invocation of a * partial decoding method. */ public static int partialIsValidUtf8( byte[] bytes, int index, int limit) { // Optimize for 100% ASCII. // Hotspot loves small simple top-level loops like this. while (index < limit && bytes[index] >= 0) { index++; } return (index >= limit) ? COMPLETE : partialIsValidUtf8NonAscii(bytes, index, limit); } private static int partialIsValidUtf8NonAscii( byte[] bytes, int index, int limit) { for (;;) { int byte1, byte2; // Optimize for interior runs of ASCII bytes. do { if (index >= limit) { return COMPLETE; } } while ((byte1 = bytes[index++]) >= 0); if (byte1 < (byte) 0xE0) { // two-byte form if (index >= limit) { return byte1; } // Simultaneously checks for illegal trailing-byte in // leading position and overlong 2-byte form. if (byte1 < (byte) 0xC2 || bytes[index++] > (byte) 0xBF) { return MALFORMED; } } else if (byte1 < (byte) 0xF0) { // three-byte form if (index >= limit - 1) { // incomplete sequence return incompleteStateFor(bytes, index, limit); } if ((byte2 = bytes[index++]) > (byte) 0xBF || // overlong? 5 most significant bits must not all be zero (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0) || // check for illegal surrogate codepoints (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0) || // byte3 trailing-byte test bytes[index++] > (byte) 0xBF) { return MALFORMED; } } else { // four-byte form if (index >= limit - 2) { // incomplete sequence return incompleteStateFor(bytes, index, limit); } if ((byte2 = bytes[index++]) > (byte) 0xBF || // Check that 1 <= plane <= 16. Tricky optimized form of: // if (byte1 > (byte) 0xF4 || // byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 || // byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F) (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0 || // byte3 trailing-byte test bytes[index++] > (byte) 0xBF || // byte4 trailing-byte test bytes[index++] > (byte) 0xBF) { return MALFORMED; } } } } private static int incompleteStateFor(int byte1) { return (byte1 > (byte) 0xF4) ? MALFORMED : byte1; } private static int incompleteStateFor(int byte1, int byte2) { return (byte1 > (byte) 0xF4 || byte2 > (byte) 0xBF) ? MALFORMED : byte1 ^ (byte2 << 8); } private static int incompleteStateFor(int byte1, int byte2, int byte3) { return (byte1 > (byte) 0xF4 || byte2 > (byte) 0xBF || byte3 > (byte) 0xBF) ? MALFORMED : byte1 ^ (byte2 << 8) ^ (byte3 << 16); } private static int incompleteStateFor(byte[] bytes, int index, int limit) { int byte1 = bytes[index - 1]; switch (limit - index) { case 0: return incompleteStateFor(byte1); case 1: return incompleteStateFor(byte1, bytes[index]); case 2: return incompleteStateFor(byte1, bytes[index], bytes[index + 1]); default: throw new AssertionError(); } } // These UTF-8 handling methods are copied from Guava's Utf8 class with a modification to throw // a protocol buffer local exception. This exception is then caught in CodedOutputStream so it can // fallback to more lenient behavior. static class UnpairedSurrogateException extends IllegalArgumentException { private UnpairedSurrogateException(int index, int length) { super("Unpaired surrogate at index " + index + " of " + length); } } /** * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string, * this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in * both time and space. * * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired * surrogates) */ static int encodedLength(CharSequence sequence) { // Warning to maintainers: this implementation is highly optimized. int utf16Length = sequence.length(); int utf8Length = utf16Length; int i = 0; // This loop optimizes for pure ASCII. while (i < utf16Length && sequence.charAt(i) < 0x80) { i++; } // This loop optimizes for chars less than 0x800. for (; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += ((0x7f - c) >>> 31); // branch free! } else { utf8Length += encodedLengthGeneral(sequence, i); break; } } if (utf8Length < utf16Length) { // Necessary and sufficient condition for overflow because of maximum 3x expansion throw new IllegalArgumentException("UTF-8 length does not fit in int: " + (utf8Length + (1L << 32))); } return utf8Length; } private static int encodedLengthGeneral(CharSequence sequence, int start) { int utf16Length = sequence.length(); int utf8Length = 0; for (int i = start; i < utf16Length; i++) { char c = sequence.charAt(i); if (c < 0x800) { utf8Length += (0x7f - c) >>> 31; // branch free! } else { utf8Length += 2; // jdk7+: if (Character.isSurrogate(c)) { if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) { // Check that we have a well-formed surrogate pair. int cp = Character.codePointAt(sequence, i); if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) { throw new UnpairedSurrogateException(i, utf16Length); } i++; } } } return utf8Length; } static int encode(CharSequence sequence, byte[] bytes, int offset, int length) { int utf16Length = sequence.length(); int j = offset; int i = 0; int limit = offset + length; // Designed to take advantage of // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination for (char c; i < utf16Length && i + j < limit && (c = sequence.charAt(i)) < 0x80; i++) { bytes[j + i] = (byte) c; } if (i == utf16Length) { return j + utf16Length; } j += i; for (char c; i < utf16Length; i++) { c = sequence.charAt(i); if (c < 0x80 && j < limit) { bytes[j++] = (byte) c; } else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes bytes[j++] = (byte) ((0xF << 6) | (c >>> 6)); bytes[j++] = (byte) (0x80 | (0x3F & c)); } else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) { // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes bytes[j++] = (byte) ((0xF << 5) | (c >>> 12)); bytes[j++] = (byte) (0x80 | (0x3F & (c >>> 6))); bytes[j++] = (byte) (0x80 | (0x3F & c)); } else if (j <= limit - 4) { // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8 bytes final char low; if (i + 1 == sequence.length() || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) { throw new UnpairedSurrogateException((i - 1), utf16Length); } int codePoint = Character.toCodePoint(c, low); bytes[j++] = (byte) ((0xF << 4) | (codePoint >>> 18)); bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12))); bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6))); bytes[j++] = (byte) (0x80 | (0x3F & codePoint)); } else { // If we are surrogates and we're not a surrogate pair, always throw an // IllegalArgumentException instead of an ArrayOutOfBoundsException. if ((Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) && (i + 1 == sequence.length() || !Character.isSurrogatePair(c, sequence.charAt(i + 1)))) { throw new UnpairedSurrogateException(i, utf16Length); } throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j); } } return j; } // End Guava UTF-8 methods. }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy