All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.pdf417.decoder.DecodedBitStreamParser Maven / Gradle / Ivy

There is a newer version: 3.5.3
Show newest version
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.pdf417.decoder;

import com.google.zxing.FormatException;
import com.google.zxing.common.DecoderResult;

/**
 * 

This class contains the methods for decoding the PDF417 codewords.

* * @author SITA Lab ([email protected]) */ final class DecodedBitStreamParser { private static final int TEXT_COMPACTION_MODE_LATCH = 900; private static final int BYTE_COMPACTION_MODE_LATCH = 901; private static final int NUMERIC_COMPACTION_MODE_LATCH = 902; private static final int BYTE_COMPACTION_MODE_LATCH_6 = 924; private static final int BEGIN_MACRO_PDF417_CONTROL_BLOCK = 928; private static final int BEGIN_MACRO_PDF417_OPTIONAL_FIELD = 923; private static final int MACRO_PDF417_TERMINATOR = 922; private static final int MODE_SHIFT_TO_BYTE_COMPACTION_MODE = 913; private static final int MAX_NUMERIC_CODEWORDS = 15; private static final int ALPHA = 0; private static final int LOWER = 1; private static final int MIXED = 2; private static final int PUNCT = 3; private static final int ALPHA_SHIFT = 4; private static final int PUNCT_SHIFT = 5; private static final int PL = 25; private static final int LL = 27; private static final int AS = 27; private static final int ML = 28; private static final int AL = 28; private static final int PS = 29; private static final int PAL = 29; private static final char[] PUNCT_CHARS = {';', '<', '>', '@', '[', 92, '}', '_', 96, '~', '!', 13, 9, ',', ':', 10, '-', '.', '$', '/', 34, '|', '*', '(', ')', '?', '{', '}', 39}; private static final char[] MIXED_CHARS = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '&', 13, 9, ',', ':', '#', '-', '.', '$', '/', '+', '%', '*', '=', '^'}; // Table containing values for the exponent of 900. // This is used in the numeric compaction decode algorithm. private static final String[] EXP900 = { "000000000000000000000000000000000000000000001", "000000000000000000000000000000000000000000900", "000000000000000000000000000000000000000810000", "000000000000000000000000000000000000729000000", "000000000000000000000000000000000656100000000", "000000000000000000000000000000590490000000000", "000000000000000000000000000531441000000000000", "000000000000000000000000478296900000000000000", "000000000000000000000430467210000000000000000", "000000000000000000387420489000000000000000000", "000000000000000348678440100000000000000000000", "000000000000313810596090000000000000000000000", "000000000282429536481000000000000000000000000", "000000254186582832900000000000000000000000000", "000228767924549610000000000000000000000000000", "205891132094649000000000000000000000000000000"}; private DecodedBitStreamParser() { } static DecoderResult decode(int[] codewords) throws FormatException { StringBuffer result = new StringBuffer(100); // Get compaction mode int codeIndex = 1; int code = codewords[codeIndex++]; while (codeIndex < codewords[0]) { switch (code) { case TEXT_COMPACTION_MODE_LATCH: codeIndex = textCompaction(codewords, codeIndex, result); break; case BYTE_COMPACTION_MODE_LATCH: codeIndex = byteCompaction(code, codewords, codeIndex, result); break; case NUMERIC_COMPACTION_MODE_LATCH: codeIndex = numericCompaction(codewords, codeIndex, result); break; case MODE_SHIFT_TO_BYTE_COMPACTION_MODE: codeIndex = byteCompaction(code, codewords, codeIndex, result); break; case BYTE_COMPACTION_MODE_LATCH_6: codeIndex = byteCompaction(code, codewords, codeIndex, result); break; default: // Default to text compaction. During testing numerous barcodes // appeared to be missing the starting mode. In these cases defaulting // to text compaction seems to work. codeIndex--; codeIndex = textCompaction(codewords, codeIndex, result); break; } if (codeIndex < codewords.length) { code = codewords[codeIndex++]; } else { throw FormatException.getFormatInstance(); } } return new DecoderResult(null, result.toString(), null, null); } /** * Text Compaction mode (see 5.4.1.5) permits all printable ASCII characters to be * encoded, i.e. values 32 - 126 inclusive in accordance with ISO/IEC 646 (IRV), as * well as selected control characters. * * @param codewords The array of codewords (data + error) * @param codeIndex The current index into the codeword array. * @param result The decoded data is appended to the result. * @return The next index into the codeword array. */ private static int textCompaction(int[] codewords, int codeIndex, StringBuffer result) { // 2 character per codeword int[] textCompactionData = new int[codewords[0] << 1]; // Used to hold the byte compaction value if there is a mode shift int[] byteCompactionData = new int[codewords[0] << 1]; int index = 0; boolean end = false; while ((codeIndex < codewords[0]) && !end) { int code = codewords[codeIndex++]; if (code < TEXT_COMPACTION_MODE_LATCH) { textCompactionData[index] = code / 30; textCompactionData[index + 1] = code % 30; index += 2; } else { switch (code) { case TEXT_COMPACTION_MODE_LATCH: codeIndex--; end = true; break; case BYTE_COMPACTION_MODE_LATCH: codeIndex--; end = true; break; case NUMERIC_COMPACTION_MODE_LATCH: codeIndex--; end = true; break; case MODE_SHIFT_TO_BYTE_COMPACTION_MODE: // The Mode Shift codeword 913 shall cause a temporary // switch from Text Compaction mode to Byte Compaction mode. // This switch shall be in effect for only the next codeword, // after which the mode shall revert to the prevailing sub-mode // of the Text Compaction mode. Codeword 913 is only available // in Text Compaction mode; its use is described in 5.4.2.4. textCompactionData[index] = MODE_SHIFT_TO_BYTE_COMPACTION_MODE; code = codewords[codeIndex++]; byteCompactionData[index] = code; //Integer.toHexString(code); index++; break; case BYTE_COMPACTION_MODE_LATCH_6: codeIndex--; end = true; break; } } } decodeTextCompaction(textCompactionData, byteCompactionData, index, result); return codeIndex; } /** * The Text Compaction mode includes all the printable ASCII characters * (i.e. values from 32 to 126) and three ASCII control characters: HT or tab * (ASCII value 9), LF or line feed (ASCII value 10), and CR or carriage * return (ASCII value 13). The Text Compaction mode also includes various latch * and shift characters which are used exclusively within the mode. The Text * Compaction mode encodes up to 2 characters per codeword. The compaction rules * for converting data into PDF417 codewords are defined in 5.4.2.2. The sub-mode * switches are defined in 5.4.2.3. * * @param textCompactionData The text compaction data. * @param byteCompactionData The byte compaction data if there * was a mode shift. * @param length The size of the text compaction and byte compaction data. * @param result The decoded data is appended to the result. */ private static void decodeTextCompaction(int[] textCompactionData, int[] byteCompactionData, int length, StringBuffer result) { // Beginning from an initial state of the Alpha sub-mode // The default compaction mode for PDF417 in effect at the start of each symbol shall always be Text // Compaction mode Alpha sub-mode (uppercase alphabetic). A latch codeword from another mode to the Text // Compaction mode shall always switch to the Text Compaction Alpha sub-mode. int subMode = ALPHA; int priorToShiftMode = ALPHA; int i = 0; while (i < length) { int subModeCh = textCompactionData[i]; char ch = 0; switch (subMode) { case ALPHA: // Alpha (uppercase alphabetic) if (subModeCh < 26) { // Upper case Alpha Character ch = (char) ('A' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else if (subModeCh == LL) { subMode = LOWER; } else if (subModeCh == ML) { subMode = MIXED; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.append((char) byteCompactionData[i]); } } break; case LOWER: // Lower (lowercase alphabetic) if (subModeCh < 26) { ch = (char) ('a' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else if (subModeCh == AS) { // Shift to alpha priorToShiftMode = subMode; subMode = ALPHA_SHIFT; } else if (subModeCh == ML) { subMode = MIXED; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.append((char) byteCompactionData[i]); } } break; case MIXED: // Mixed (numeric and some punctuation) if (subModeCh < PL) { ch = MIXED_CHARS[subModeCh]; } else { if (subModeCh == PL) { subMode = PUNCT; } else if (subModeCh == 26) { ch = ' '; } else if (subModeCh == LL) { subMode = LOWER; } else if (subModeCh == AL) { subMode = ALPHA; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.append((char) byteCompactionData[i]); } } break; case PUNCT: // Punctuation if (subModeCh < PAL) { ch = PUNCT_CHARS[subModeCh]; } else { if (subModeCh == PAL) { subMode = ALPHA; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.append((char) byteCompactionData[i]); } } break; case ALPHA_SHIFT: // Restore sub-mode subMode = priorToShiftMode; if (subModeCh < 26) { ch = (char) ('A' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else { // is this even possible? } } break; case PUNCT_SHIFT: // Restore sub-mode subMode = priorToShiftMode; if (subModeCh < PAL) { ch = PUNCT_CHARS[subModeCh]; } else { if (subModeCh == PAL) { subMode = ALPHA; } } break; } if (ch != 0) { // Append decoded character to result result.append(ch); } i++; } } /** * Byte Compaction mode (see 5.4.3) permits all 256 possible 8-bit byte values to be encoded. * This includes all ASCII characters value 0 to 127 inclusive and provides for international * character set support. * * @param mode The byte compaction mode i.e. 901 or 924 * @param codewords The array of codewords (data + error) * @param codeIndex The current index into the codeword array. * @param result The decoded data is appended to the result. * @return The next index into the codeword array. */ private static int byteCompaction(int mode, int[] codewords, int codeIndex, StringBuffer result) { if (mode == BYTE_COMPACTION_MODE_LATCH) { // Total number of Byte Compaction characters to be encoded // is not a multiple of 6 int count = 0; long value = 0; char[] decodedData = new char[6]; int[] byteCompactedCodewords = new int[6]; boolean end = false; while ((codeIndex < codewords[0]) && !end) { int code = codewords[codeIndex++]; if (code < TEXT_COMPACTION_MODE_LATCH) { byteCompactedCodewords[count] = code; count++; // Base 900 value = 900 * value + code; } else { if (code == TEXT_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH || code == NUMERIC_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH_6 || code == BEGIN_MACRO_PDF417_CONTROL_BLOCK || code == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || code == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } } if ((count % 5 == 0) && (count > 0)) { // Decode every 5 codewords // Convert to Base 256 for (int j = 0; j < 6; ++j) { decodedData[5 - j] = (char) (value % 256); value >>= 8; } result.append(decodedData); count = 0; } } // If Byte Compaction mode is invoked with codeword 901, // the final group of codewords is interpreted directly // as one byte per codeword, without compaction. for (int i = (count / 5) * 5; i < count; i++) { result.append((char) byteCompactedCodewords[i]); } } else if (mode == BYTE_COMPACTION_MODE_LATCH_6) { // Total number of Byte Compaction characters to be encoded // is an integer multiple of 6 int count = 0; long value = 0; boolean end = false; while (codeIndex < codewords[0] && !end) { int code = codewords[codeIndex++]; if (code < TEXT_COMPACTION_MODE_LATCH) { count++; // Base 900 value = 900 * value + code; } else { if (code == TEXT_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH || code == NUMERIC_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH_6 || code == BEGIN_MACRO_PDF417_CONTROL_BLOCK || code == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || code == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } } if ((count % 5 == 0) && (count > 0)) { // Decode every 5 codewords // Convert to Base 256 char[] decodedData = new char[6]; for (int j = 0; j < 6; ++j) { decodedData[5 - j] = (char) (value & 0xFF); value >>= 8; } result.append(decodedData); } } } return codeIndex; } /** * Numeric Compaction mode (see 5.4.4) permits efficient encoding of numeric data strings. * * @param codewords The array of codewords (data + error) * @param codeIndex The current index into the codeword array. * @param result The decoded data is appended to the result. * @return The next index into the codeword array. */ private static int numericCompaction(int[] codewords, int codeIndex, StringBuffer result) { int count = 0; boolean end = false; int[] numericCodewords = new int[MAX_NUMERIC_CODEWORDS]; while (codeIndex < codewords[0] && !end) { int code = codewords[codeIndex++]; if (codeIndex == codewords[0]) { end = true; } if (code < TEXT_COMPACTION_MODE_LATCH) { numericCodewords[count] = code; count++; } else { if (code == TEXT_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH_6 || code == BEGIN_MACRO_PDF417_CONTROL_BLOCK || code == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || code == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } } if (count % MAX_NUMERIC_CODEWORDS == 0 || code == NUMERIC_COMPACTION_MODE_LATCH || end) { // Re-invoking Numeric Compaction mode (by using codeword 902 // while in Numeric Compaction mode) serves to terminate the // current Numeric Compaction mode grouping as described in 5.4.4.2, // and then to start a new one grouping. String s = decodeBase900toBase10(numericCodewords, count); result.append(s); count = 0; } } return codeIndex; } /** * Convert a list of Numeric Compacted codewords from Base 900 to Base 10. * * @param codewords The array of codewords * @param count The number of codewords * @return The decoded string representing the Numeric data. */ /* EXAMPLE Encode the fifteen digit numeric string 000213298174000 Prefix the numeric string with a 1 and set the initial value of t = 1 000 213 298 174 000 Calculate codeword 0 d0 = 1 000 213 298 174 000 mod 900 = 200 t = 1 000 213 298 174 000 div 900 = 1 111 348 109 082 Calculate codeword 1 d1 = 1 111 348 109 082 mod 900 = 282 t = 1 111 348 109 082 div 900 = 1 234 831 232 Calculate codeword 2 d2 = 1 234 831 232 mod 900 = 632 t = 1 234 831 232 div 900 = 1 372 034 Calculate codeword 3 d3 = 1 372 034 mod 900 = 434 t = 1 372 034 div 900 = 1 524 Calculate codeword 4 d4 = 1 524 mod 900 = 624 t = 1 524 div 900 = 1 Calculate codeword 5 d5 = 1 mod 900 = 1 t = 1 div 900 = 0 Codeword sequence is: 1, 624, 434, 632, 282, 200 Decode the above codewords involves 1 x 900 power of 5 + 624 x 900 power of 4 + 434 x 900 power of 3 + 632 x 900 power of 2 + 282 x 900 power of 1 + 200 x 900 power of 0 = 1000213298174000 Remove leading 1 => Result is 000213298174000 As there are huge numbers involved here we must use fake out the maths using string tokens for the numbers. BigDecimal is not supported by J2ME. */ private static String decodeBase900toBase10(int[] codewords, int count) { StringBuffer accum = null; for (int i = 0; i < count; i++) { StringBuffer value = multiply(EXP900[count - i - 1], codewords[i]); if (accum == null) { // First time in accum=0 accum = value; } else { accum = add(accum.toString(), value.toString()); } } String result = null; // Remove leading '1' which was inserted to preserve // leading zeros for (int i = 0; i < accum.length(); i++) { if (accum.charAt(i) == '1') { //result = accum.substring(i + 1); result = accum.toString().substring(i + 1); break; } } if (result == null) { // No leading 1 => just write the converted number. result = accum.toString(); } return result; } /** * Multiplies two String numbers * * @param value1 Any number represented as a string. * @param value2 A number <= 999. * @return the result of value1 * value2. */ private static StringBuffer multiply(String value1, int value2) { StringBuffer result = new StringBuffer(value1.length()); for (int i = 0; i < value1.length(); i++) { // Put zeros into the result. result.append('0'); } int hundreds = value2 / 100; int tens = (value2 / 10) % 10; int ones = value2 % 10; // Multiply by ones for (int j = 0; j < ones; j++) { result = add(result.toString(), value1); } // Multiply by tens for (int j = 0; j < tens; j++) { result = add(result.toString(), (value1 + '0').substring(1)); } // Multiply by hundreds for (int j = 0; j < hundreds; j++) { result = add(result.toString(), (value1 + "00").substring(2)); } return result; } /** * Add two numbers which are represented as strings. * * @param value1 * @param value2 * @return the result of value1 + value2 */ private static StringBuffer add(String value1, String value2) { StringBuffer temp1 = new StringBuffer(5); StringBuffer temp2 = new StringBuffer(5); StringBuffer result = new StringBuffer(value1.length()); for (int i = 0; i < value1.length(); i++) { // Put zeros into the result. result.append('0'); } int carry = 0; for (int i = value1.length() - 3; i > -1; i -= 3) { temp1.setLength(0); temp1.append(value1.charAt(i)); temp1.append(value1.charAt(i + 1)); temp1.append(value1.charAt(i + 2)); temp2.setLength(0); temp2.append(value2.charAt(i)); temp2.append(value2.charAt(i + 1)); temp2.append(value2.charAt(i + 2)); int intValue1 = Integer.parseInt(temp1.toString()); int intValue2 = Integer.parseInt(temp2.toString()); int sumval = (intValue1 + intValue2 + carry) % 1000; carry = (intValue1 + intValue2 + carry) / 1000; result.setCharAt(i + 2, (char) ((sumval % 10) + '0')); result.setCharAt(i + 1, (char) (((sumval / 10) % 10) + '0')); result.setCharAt(i, (char) ((sumval / 100) + '0')); } return result; } /* private static String decodeBase900toBase10(int codewords[], int count) { BigInteger accum = BigInteger.valueOf(0); BigInteger value = null; for (int i = 0; i < count; i++) { value = BigInteger.valueOf(900).pow(count - i - 1); value = value.multiply(BigInteger.valueOf(codewords[i])); accum = accum.add(value); } if (debug) System.out.println("Big Integer " + accum); String result = accum.toString().substring(1); return result; } */ }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy