com.google.zxing.common.reedsolomon.GenericGF Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of core Show documentation
Show all versions of core Show documentation
Core barcode encoding/decoding library
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.common.reedsolomon;
/**
* This class contains utility methods for performing mathematical operations over
* the Galois Fields. Operations use a given primitive polynomial in calculations.
*
* Throughout this package, elements of the GF are represented as an {@code int}
* for convenience and speed (but at the cost of memory).
*
*
* @author Sean Owen
* @author David Olivier
*/
public final class GenericGF {
public static final GenericGF AZTEC_DATA_12 = new GenericGF(0x1069, 4096); // x^12 + x^6 + x^5 + x^3 + 1
public static final GenericGF AZTEC_DATA_10 = new GenericGF(0x409, 1024); // x^10 + x^3 + 1
public static final GenericGF AZTEC_DATA_6 = new GenericGF(0x43, 64); // x^6 + x + 1
public static final GenericGF AZTEC_PARAM = new GenericGF(0x13, 16); // x^4 + x + 1
public static final GenericGF QR_CODE_FIELD_256 = new GenericGF(0x011D, 256); // x^8 + x^4 + x^3 + x^2 + 1
public static final GenericGF DATA_MATRIX_FIELD_256 = new GenericGF(0x012D, 256); // x^8 + x^5 + x^3 + x^2 + 1
public static final GenericGF AZTEC_DATA_8 = DATA_MATRIX_FIELD_256;
public static final GenericGF MAXICODE_FIELD_64 = AZTEC_DATA_6;
private static final int INITIALIZATION_THRESHOLD = 0;
private int[] expTable;
private int[] logTable;
private GenericGFPoly zero;
private GenericGFPoly one;
private final int size;
private final int primitive;
private boolean initialized = false;
/**
* Create a representation of GF(size) using the given primitive polynomial.
*
* @param primitive irreducible polynomial whose coefficients are represented by
* the bits of an int, where the least-significant bit represents the constant
* coefficient
*/
public GenericGF(int primitive, int size) {
this.primitive = primitive;
this.size = size;
if (size <= INITIALIZATION_THRESHOLD){
initialize();
}
}
private void initialize(){
expTable = new int[size];
logTable = new int[size];
int x = 1;
for (int i = 0; i < size; i++) {
expTable[i] = x;
x <<= 1; // x = x * 2; we're assuming the generator alpha is 2
if (x >= size) {
x ^= primitive;
x &= size-1;
}
}
for (int i = 0; i < size-1; i++) {
logTable[expTable[i]] = i;
}
// logTable[0] == 0 but this should never be used
zero = new GenericGFPoly(this, new int[]{0});
one = new GenericGFPoly(this, new int[]{1});
initialized = true;
}
private void checkInit(){
if (!initialized) {
initialize();
}
}
GenericGFPoly getZero() {
checkInit();
return zero;
}
GenericGFPoly getOne() {
checkInit();
return one;
}
/**
* @return the monomial representing coefficient * x^degree
*/
GenericGFPoly buildMonomial(int degree, int coefficient) {
checkInit();
if (degree < 0) {
throw new IllegalArgumentException();
}
if (coefficient == 0) {
return zero;
}
int[] coefficients = new int[degree + 1];
coefficients[0] = coefficient;
return new GenericGFPoly(this, coefficients);
}
/**
* Implements both addition and subtraction -- they are the same in GF(size).
*
* @return sum/difference of a and b
*/
static int addOrSubtract(int a, int b) {
return a ^ b;
}
/**
* @return 2 to the power of a in GF(size)
*/
int exp(int a) {
checkInit();
return expTable[a];
}
/**
* @return base 2 log of a in GF(size)
*/
int log(int a) {
checkInit();
if (a == 0) {
throw new IllegalArgumentException();
}
return logTable[a];
}
/**
* @return multiplicative inverse of a
*/
int inverse(int a) {
checkInit();
if (a == 0) {
throw new ArithmeticException();
}
return expTable[size - logTable[a] - 1];
}
/**
* @param a
* @param b
* @return product of a and b in GF(size)
*/
int multiply(int a, int b) {
checkInit();
if (a == 0 || b == 0) {
return 0;
}
if (a<0 || b <0 || a>=size || b >=size){
a++;
}
int logSum = logTable[a] + logTable[b];
return expTable[(logSum % size) + logSum / size];
}
public int getSize(){
return size;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy