com.google.zxing.common.reedsolomon.ReedSolomonDecoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of core Show documentation
Show all versions of core Show documentation
Core barcode encoding/decoding library
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.common.reedsolomon;
/**
* Implements Reed-Solomon decoding, as the name implies.
*
* The algorithm will not be explained here, but the following references were helpful
* in creating this implementation:
*
*
* - Bruce Maggs.
*
* "Decoding Reed-Solomon Codes" (see discussion of Forney's Formula)
* - J.I. Hall.
* "Chapter 5. Generalized Reed-Solomon Codes"
* (see discussion of Euclidean algorithm)
*
*
* Much credit is due to William Rucklidge since portions of this code are an indirect
* port of his C++ Reed-Solomon implementation.
*
* @author Sean Owen
* @author William Rucklidge
* @author sanfordsquires
*/
public final class ReedSolomonDecoder {
private final GenericGF field;
public ReedSolomonDecoder(GenericGF field) {
this.field = field;
}
/**
* Decodes given set of received codewords, which include both data and error-correction
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
* in the input.
*
* @param received data and error-correction codewords
* @param twoS number of error-correction codewords available
* @throws ReedSolomonException if decoding fails for any reason
*/
public void decode(int[] received, int twoS) throws ReedSolomonException {
GenericGFPoly poly = new GenericGFPoly(field, received);
int[] syndromeCoefficients = new int[twoS];
boolean noError = true;
for (int i = 0; i < twoS; i++) {
int eval = poly.evaluateAt(field.exp(i + field.getGeneratorBase()));
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = eval;
if (eval != 0) {
noError = false;
}
}
if (noError) {
return;
}
GenericGFPoly syndrome = new GenericGFPoly(field, syndromeCoefficients);
GenericGFPoly[] sigmaOmega =
runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
GenericGFPoly sigma = sigmaOmega[0];
GenericGFPoly omega = sigmaOmega[1];
int[] errorLocations = findErrorLocations(sigma);
int[] errorMagnitudes = findErrorMagnitudes(omega, errorLocations);
for (int i = 0; i < errorLocations.length; i++) {
int position = received.length - 1 - field.log(errorLocations[i]);
if (position < 0) {
throw new ReedSolomonException("Bad error location");
}
received[position] = GenericGF.addOrSubtract(received[position], errorMagnitudes[i]);
}
}
private GenericGFPoly[] runEuclideanAlgorithm(GenericGFPoly a, GenericGFPoly b, int R)
throws ReedSolomonException {
// Assume a's degree is >= b's
if (a.getDegree() < b.getDegree()) {
GenericGFPoly temp = a;
a = b;
b = temp;
}
GenericGFPoly rLast = a;
GenericGFPoly r = b;
GenericGFPoly tLast = field.getZero();
GenericGFPoly t = field.getOne();
// Run Euclidean algorithm until r's degree is less than R/2
while (2 * r.getDegree() >= R) {
GenericGFPoly rLastLast = rLast;
GenericGFPoly tLastLast = tLast;
rLast = r;
tLast = t;
// Divide rLastLast by rLast, with quotient in q and remainder in r
if (rLast.isZero()) {
// Oops, Euclidean algorithm already terminated?
throw new ReedSolomonException("r_{i-1} was zero");
}
r = rLastLast;
GenericGFPoly q = field.getZero();
int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
int dltInverse = field.inverse(denominatorLeadingTerm);
while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
int degreeDiff = r.getDegree() - rLast.getDegree();
int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale));
r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
}
t = q.multiply(tLast).addOrSubtract(tLastLast);
if (r.getDegree() >= rLast.getDegree()) {
throw new IllegalStateException("Division algorithm failed to reduce polynomial? " +
"r: " + r + ", rLast: " + rLast);
}
}
int sigmaTildeAtZero = t.getCoefficient(0);
if (sigmaTildeAtZero == 0) {
throw new ReedSolomonException("sigmaTilde(0) was zero");
}
int inverse = field.inverse(sigmaTildeAtZero);
GenericGFPoly sigma = t.multiply(inverse);
GenericGFPoly omega = r.multiply(inverse);
return new GenericGFPoly[]{sigma, omega};
}
private int[] findErrorLocations(GenericGFPoly errorLocator) throws ReedSolomonException {
// This is a direct application of Chien's search
int numErrors = errorLocator.getDegree();
if (numErrors == 1) { // shortcut
return new int[] { errorLocator.getCoefficient(1) };
}
int[] result = new int[numErrors];
int e = 0;
for (int i = 1; i < field.getSize() && e < numErrors; i++) {
if (errorLocator.evaluateAt(i) == 0) {
result[e] = field.inverse(i);
e++;
}
}
if (e != numErrors) {
throw new ReedSolomonException("Error locator degree does not match number of roots");
}
return result;
}
private int[] findErrorMagnitudes(GenericGFPoly errorEvaluator, int[] errorLocations) {
// This is directly applying Forney's Formula
int s = errorLocations.length;
int[] result = new int[s];
for (int i = 0; i < s; i++) {
int xiInverse = field.inverse(errorLocations[i]);
int denominator = 1;
for (int j = 0; j < s; j++) {
if (i != j) {
//denominator = field.multiply(denominator,
// GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
// Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
// Below is a funny-looking workaround from Steven Parkes
int term = field.multiply(errorLocations[j], xiInverse);
int termPlus1 = (term & 0x1) == 0 ? term | 1 : term & ~1;
denominator = field.multiply(denominator, termPlus1);
}
}
result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse),
field.inverse(denominator));
if (field.getGeneratorBase() != 0) {
result[i] = field.multiply(result[i], xiInverse);
}
}
return result;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy