All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.bitcoin.core.ECKey Maven / Gradle / Ivy

The newest version!
/**
 * Copyright 2011 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.bitcoin.core;

import com.google.bitcoin.crypto.EncryptedPrivateKey;
import com.google.bitcoin.crypto.KeyCrypter;
import com.google.bitcoin.crypto.KeyCrypterException;
import com.google.bitcoin.crypto.TransactionSignature;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import org.bitcoin.NativeSecp256k1;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.spongycastle.asn1.*;
import org.spongycastle.asn1.sec.SECNamedCurves;
import org.spongycastle.asn1.x9.X9ECParameters;
import org.spongycastle.asn1.x9.X9IntegerConverter;
import org.spongycastle.crypto.AsymmetricCipherKeyPair;
import org.spongycastle.crypto.generators.ECKeyPairGenerator;
import org.spongycastle.crypto.params.*;
import org.spongycastle.crypto.signers.ECDSASigner;
import org.spongycastle.math.ec.ECAlgorithms;
import org.spongycastle.math.ec.ECCurve;
import org.spongycastle.math.ec.ECPoint;
import org.spongycastle.util.encoders.Base64;

import javax.annotation.Nullable;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.Serializable;
import java.math.BigInteger;
import java.nio.charset.Charset;
import java.security.SecureRandom;
import java.security.SignatureException;
import java.util.Arrays;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkState;

// TODO: This class is quite a mess by now. Once users are migrated away from Java serialization for the wallets,
// refactor this to have better internal layout and a more consistent API.

/**
 * 

Represents an elliptic curve public and (optionally) private key, usable for digital signatures but not encryption. * Creating a new ECKey with the empty constructor will generate a new random keypair. Other constructors can be used * when you already have the public or private parts. If you create a key with only the public part, you can check * signatures but not create them.

* *

ECKey also provides access to Bitcoin-Qt compatible text message signing, as accessible via the UI or JSON-RPC. * This is slightly different to signing raw bytes - if you want to sign your own data and it won't be exposed as * text to people, you don't want to use this. If in doubt, ask on the mailing list.

* *

The ECDSA algorithm supports key recovery in which a signature plus a couple of discriminator bits can * be reversed to find the public key used to calculate it. This can be convenient when you have a message and a * signature and want to find out who signed it, rather than requiring the user to provide the expected identity.

*/ public class ECKey implements Serializable { private static final Logger log = LoggerFactory.getLogger(ECKey.class); /** The parameters of the secp256k1 curve that Bitcoin uses. */ public static final ECDomainParameters CURVE; /** * Equal to CURVE.getN().shiftRight(1), used for canonicalising the S value of a signature. If you aren't * sure what this is about, you can ignore it. */ public static final BigInteger HALF_CURVE_ORDER; private static final SecureRandom secureRandom; private static final long serialVersionUID = -728224901792295832L; static { // All clients must agree on the curve to use by agreement. Bitcoin uses secp256k1. X9ECParameters params = SECNamedCurves.getByName("secp256k1"); CURVE = new ECDomainParameters(params.getCurve(), params.getG(), params.getN(), params.getH()); HALF_CURVE_ORDER = params.getN().shiftRight(1); secureRandom = new SecureRandom(); } // The two parts of the key. If "priv" is set, "pub" can always be calculated. If "pub" is set but not "priv", we // can only verify signatures not make them. // TODO: Redesign this class to use consistent internals and more efficient serialization. private BigInteger priv; private byte[] pub; // Creation time of the key in seconds since the epoch, or zero if the key was deserialized from a version that did // not have this field. private long creationTimeSeconds; /** * Instance of the KeyCrypter interface to use for encrypting and decrypting the key. */ transient private KeyCrypter keyCrypter; /** * The encrypted private key information. */ private EncryptedPrivateKey encryptedPrivateKey; // Transient because it's calculated on demand. transient private byte[] pubKeyHash; /** * Generates an entirely new keypair. Point compression is used so the resulting public key will be 33 bytes * (32 for the co-ordinate and 1 byte to represent the y bit). */ public ECKey() { ECKeyPairGenerator generator = new ECKeyPairGenerator(); ECKeyGenerationParameters keygenParams = new ECKeyGenerationParameters(CURVE, secureRandom); generator.init(keygenParams); AsymmetricCipherKeyPair keypair = generator.generateKeyPair(); ECPrivateKeyParameters privParams = (ECPrivateKeyParameters) keypair.getPrivate(); ECPublicKeyParameters pubParams = (ECPublicKeyParameters) keypair.getPublic(); priv = privParams.getD(); // Unfortunately Bouncy Castle does not let us explicitly change a point to be compressed, even though it // could easily do so. We must re-build it here so the ECPoints withCompression flag can be set to true. ECPoint uncompressed = pubParams.getQ(); ECPoint compressed = compressPoint(uncompressed); pub = compressed.getEncoded(); creationTimeSeconds = Utils.currentTimeMillis() / 1000; } private static ECPoint compressPoint(ECPoint uncompressed) { return new ECPoint.Fp(CURVE.getCurve(), uncompressed.getX(), uncompressed.getY(), true); } /** * Construct an ECKey from an ASN.1 encoded private key. These are produced by OpenSSL and stored by the Bitcoin * reference implementation in its wallet. Note that this is slow because it requires an EC point multiply. */ public static ECKey fromASN1(byte[] asn1privkey) { return new ECKey(extractPrivateKeyFromASN1(asn1privkey)); } /** Creates an ECKey given the private key only. The public key is calculated from it (this is slow) */ public ECKey(BigInteger privKey) { this(privKey, (byte[])null); } /** A constructor variant with BigInteger pubkey. See {@link ECKey#ECKey(BigInteger, byte[])}. */ public ECKey(BigInteger privKey, BigInteger pubKey) { this(privKey, Utils.bigIntegerToBytes(pubKey, 65)); } /** * Creates an ECKey given only the private key bytes. This is the same as using the BigInteger constructor, but * is more convenient if you are importing a key from elsewhere. The public key will be automatically derived * from the private key. */ public ECKey(@Nullable byte[] privKeyBytes, @Nullable byte[] pubKey) { this(privKeyBytes == null ? null : new BigInteger(1, privKeyBytes), pubKey); } /** * Create a new ECKey with an encrypted private key, a public key and a KeyCrypter. * * @param encryptedPrivateKey The private key, encrypted, * @param pubKey The keys public key * @param keyCrypter The KeyCrypter that will be used, with an AES key, to encrypt and decrypt the private key */ public ECKey(@Nullable EncryptedPrivateKey encryptedPrivateKey, @Nullable byte[] pubKey, KeyCrypter keyCrypter) { this((byte[])null, pubKey); this.keyCrypter = Preconditions.checkNotNull(keyCrypter); this.encryptedPrivateKey = encryptedPrivateKey; } /** * Creates an ECKey given either the private key only, the public key only, or both. If only the private key * is supplied, the public key will be calculated from it (this is slow). If both are supplied, it's assumed * the public key already correctly matches the public key. If only the public key is supplied, this ECKey cannot * be used for signing. * @param compressed If set to true and pubKey is null, the derived public key will be in compressed form. */ public ECKey(@Nullable BigInteger privKey, @Nullable byte[] pubKey, boolean compressed) { if (privKey == null && pubKey == null) throw new IllegalArgumentException("ECKey requires at least private or public key"); this.priv = privKey; this.pub = null; if (pubKey == null) { // Derive public from private. this.pub = publicKeyFromPrivate(privKey, compressed); } else { // We expect the pubkey to be in regular encoded form, just as a BigInteger. Therefore the first byte is // a special marker byte. // TODO: This is probably not a useful API and may be confusing. this.pub = pubKey; } } /** * Creates an ECKey given either the private key only, the public key only, or both. If only the private key * is supplied, the public key will be calculated from it (this is slow). If both are supplied, it's assumed * the public key already correctly matches the public key. If only the public key is supplied, this ECKey cannot * be used for signing. */ private ECKey(@Nullable BigInteger privKey, @Nullable byte[] pubKey) { this(privKey, pubKey, false); } public boolean isPubKeyOnly() { return priv == null; } public boolean hasPrivKey() { return priv != null; } /** * Output this ECKey as an ASN.1 encoded private key, as understood by OpenSSL or used by the BitCoin reference * implementation in its wallet storage format. */ public byte[] toASN1() { try { ByteArrayOutputStream baos = new ByteArrayOutputStream(400); // ASN1_SEQUENCE(EC_PRIVATEKEY) = { // ASN1_SIMPLE(EC_PRIVATEKEY, version, LONG), // ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING), // ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0), // ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1) // } ASN1_SEQUENCE_END(EC_PRIVATEKEY) DERSequenceGenerator seq = new DERSequenceGenerator(baos); seq.addObject(new ASN1Integer(1)); // version seq.addObject(new DEROctetString(priv.toByteArray())); seq.addObject(new DERTaggedObject(0, SECNamedCurves.getByName("secp256k1").toASN1Primitive())); seq.addObject(new DERTaggedObject(1, new DERBitString(getPubKey()))); seq.close(); return baos.toByteArray(); } catch (IOException e) { throw new RuntimeException(e); // Cannot happen, writing to memory stream. } } /** * Returns public key bytes from the given private key. To convert a byte array into a BigInteger, use * new BigInteger(1, bytes); */ public static byte[] publicKeyFromPrivate(BigInteger privKey, boolean compressed) { ECPoint point = CURVE.getG().multiply(privKey); if (compressed) point = compressPoint(point); return point.getEncoded(); } /** Gets the hash160 form of the public key (as seen in addresses). */ public byte[] getPubKeyHash() { if (pubKeyHash == null) pubKeyHash = Utils.sha256hash160(this.pub); return pubKeyHash; } /** * Gets the raw public key value. This appears in transaction scriptSigs. Note that this is not the same * as the pubKeyHash/address. */ public byte[] getPubKey() { return pub; } /** * Returns whether this key is using the compressed form or not. Compressed pubkeys are only 33 bytes, not 64. */ public boolean isCompressed() { return pub.length == 33; } public String toString() { StringBuilder b = new StringBuilder(); b.append("pub:").append(Utils.bytesToHexString(pub)); if (creationTimeSeconds != 0) { b.append(" timestamp:").append(creationTimeSeconds); } if (isEncrypted()) { b.append(" encrypted"); } return b.toString(); } /** * Produce a string rendering of the ECKey INCLUDING the private key. * Unless you absolutely need the private key it is better for security reasons to just use toString(). */ public String toStringWithPrivate() { StringBuilder b = new StringBuilder(); b.append(toString()); if (priv != null) { b.append(" priv:").append(Utils.bytesToHexString(priv.toByteArray())); } return b.toString(); } /** * Returns the address that corresponds to the public part of this ECKey. Note that an address is derived from * the RIPEMD-160 hash of the public key and is not the public key itself (which is too large to be convenient). */ public Address toAddress(NetworkParameters params) { byte[] hash160 = Utils.sha256hash160(pub); return new Address(params, hash160); } /** * Clears all the ECKey private key contents from memory. * WARNING - this method irreversibly deletes the private key information. * It turns the ECKEy into a watch only key. */ public void clearPrivateKey() { priv = BigInteger.ZERO; if (encryptedPrivateKey != null) { encryptedPrivateKey.clear(); } } /** * Groups the two components that make up a signature, and provides a way to encode to DER form, which is * how ECDSA signatures are represented when embedded in other data structures in the Bitcoin protocol. The raw * components can be useful for doing further EC maths on them. */ public static class ECDSASignature { /** The two components of the signature. */ public BigInteger r, s; /** * Constructs a signature with the given components. Does NOT automatically canonicalise the signature. */ public ECDSASignature(BigInteger r, BigInteger s) { this.r = r; this.s = s; } /** * Will automatically adjust the S component to be less than or equal to half the curve order, if necessary. * This is required because for every signature (r,s) the signature (r, -s (mod N)) is a valid signature of * the same message. However, we dislike the ability to modify the bits of a Bitcoin transaction after it's * been signed, as that violates various assumed invariants. Thus in future only one of those forms will be * considered legal and the other will be banned. */ public void ensureCanonical() { if (s.compareTo(HALF_CURVE_ORDER) > 0) { // The order of the curve is the number of valid points that exist on that curve. If S is in the upper // half of the number of valid points, then bring it back to the lower half. Otherwise, imagine that // N = 10 // s = 8, so (-8 % 10 == 2) thus both (r, 8) and (r, 2) are valid solutions. // 10 - 8 == 2, giving us always the latter solution, which is canonical. s = CURVE.getN().subtract(s); } } /** * DER is an international standard for serializing data structures which is widely used in cryptography. * It's somewhat like protocol buffers but less convenient. This method returns a standard DER encoding * of the signature, as recognized by OpenSSL and other libraries. */ public byte[] encodeToDER() { try { return derByteStream().toByteArray(); } catch (IOException e) { throw new RuntimeException(e); // Cannot happen. } } public static ECDSASignature decodeFromDER(byte[] bytes) { try { ASN1InputStream decoder = new ASN1InputStream(bytes); DLSequence seq = (DLSequence) decoder.readObject(); DERInteger r, s; try { r = (DERInteger) seq.getObjectAt(0); s = (DERInteger) seq.getObjectAt(1); } catch (ClassCastException e) { throw new IllegalArgumentException(e); } decoder.close(); // OpenSSL deviates from the DER spec by interpreting these values as unsigned, though they should not be // Thus, we always use the positive versions. See: http://r6.ca/blog/20111119T211504Z.html return new ECDSASignature(r.getPositiveValue(), s.getPositiveValue()); } catch (IOException e) { throw new RuntimeException(e); } } protected ByteArrayOutputStream derByteStream() throws IOException { // Usually 70-72 bytes. ByteArrayOutputStream bos = new ByteArrayOutputStream(72); DERSequenceGenerator seq = new DERSequenceGenerator(bos); seq.addObject(new DERInteger(r)); seq.addObject(new DERInteger(s)); seq.close(); return bos; } } /** * Signs the given hash and returns the R and S components as BigIntegers. In the Bitcoin protocol, they are * usually encoded using DER format, so you want {@link com.google.bitcoin.core.ECKey.ECDSASignature#toASN1()} * instead. However sometimes the independent components can be useful, for instance, if you're doing to do * further EC maths on them. * @throws KeyCrypterException if this ECKey doesn't have a private part. */ public ECDSASignature sign(Sha256Hash input) throws KeyCrypterException { return sign(input, null); } /** * If this global variable is set to true, sign() creates a dummy signature and verify() always returns true. * This is intended to help accelerate unit tests that do a lot of signing/verifying, which in the debugger * can be painfully slow. */ @VisibleForTesting public static boolean FAKE_SIGNATURES = false; /** * Signs the given hash and returns the R and S components as BigIntegers. In the Bitcoin protocol, they are * usually encoded using DER format, so you want {@link com.google.bitcoin.core.ECKey.ECDSASignature#encodeToDER()} * instead. However sometimes the independent components can be useful, for instance, if you're doing to do further * EC maths on them. * * @param aesKey The AES key to use for decryption of the private key. If null then no decryption is required. * @throws KeyCrypterException if this ECKey doesn't have a private part. */ public ECDSASignature sign(Sha256Hash input, @Nullable KeyParameter aesKey) throws KeyCrypterException { if (FAKE_SIGNATURES) return TransactionSignature.dummy(); // The private key bytes to use for signing. BigInteger privateKeyForSigning; if (isEncrypted()) { // The private key needs decrypting before use. if (aesKey == null) { throw new KeyCrypterException("This ECKey is encrypted but no decryption key has been supplied."); } if (keyCrypter == null) { throw new KeyCrypterException("There is no KeyCrypter to decrypt the private key for signing."); } privateKeyForSigning = new BigInteger(1, keyCrypter.decrypt(encryptedPrivateKey, aesKey)); // Check encryption was correct. if (!Arrays.equals(pub, publicKeyFromPrivate(privateKeyForSigning, isCompressed()))) throw new KeyCrypterException("Could not decrypt bytes"); } else { // No decryption of private key required. if (priv == null) { throw new KeyCrypterException("This ECKey does not have the private key necessary for signing."); } else { privateKeyForSigning = priv; } } ECDSASigner signer = new ECDSASigner(); ECPrivateKeyParameters privKey = new ECPrivateKeyParameters(privateKeyForSigning, CURVE); signer.init(true, privKey); BigInteger[] components = signer.generateSignature(input.getBytes()); final ECDSASignature signature = new ECDSASignature(components[0], components[1]); signature.ensureCanonical(); return signature; } /** *

Verifies the given ECDSA signature against the message bytes using the public key bytes.

* *

When using native ECDSA verification, data must be 32 bytes, and no element may be * larger than 520 bytes.

* * @param data Hash of the data to verify. * @param signature ASN.1 encoded signature. * @param pub The public key bytes to use. */ public static boolean verify(byte[] data, ECDSASignature signature, byte[] pub) { if (FAKE_SIGNATURES) return true; if (NativeSecp256k1.enabled) return NativeSecp256k1.verify(data, signature.encodeToDER(), pub); ECDSASigner signer = new ECDSASigner(); ECPublicKeyParameters params = new ECPublicKeyParameters(CURVE.getCurve().decodePoint(pub), CURVE); signer.init(false, params); try { return signer.verifySignature(data, signature.r, signature.s); } catch (NullPointerException e) { // Bouncy Castle contains a bug that can cause NPEs given specially crafted signatures. Those signatures // are inherently invalid/attack sigs so we just fail them here rather than crash the thread. log.error("Caught NPE inside bouncy castle"); e.printStackTrace(); return false; } } /** * Verifies the given ASN.1 encoded ECDSA signature against a hash using the public key. * * @param data Hash of the data to verify. * @param signature ASN.1 encoded signature. * @param pub The public key bytes to use. */ public static boolean verify(byte[] data, byte[] signature, byte[] pub) { if (NativeSecp256k1.enabled) return NativeSecp256k1.verify(data, signature, pub); return verify(data, ECDSASignature.decodeFromDER(signature), pub); } /** * Verifies the given ASN.1 encoded ECDSA signature against a hash using the public key. * * @param data Hash of the data to verify. * @param signature ASN.1 encoded signature. */ public boolean verify(byte[] data, byte[] signature) { return ECKey.verify(data, signature, getPubKey()); } /** * Verifies the given R/S pair (signature) against a hash using the public key. */ public boolean verify(Sha256Hash sigHash, ECDSASignature signature) { return ECKey.verify(sigHash.getBytes(), signature, getPubKey()); } /** * Returns true if this pubkey is canonical, i.e. the correct length taking into account compression. */ public boolean isPubKeyCanonical() { return isPubKeyCanonical(pub); } /** * Returns true if the given pubkey is canonical, i.e. the correct length taking into account compression. */ public static boolean isPubKeyCanonical(byte[] pubkey) { if (pubkey.length < 33) return false; if (pubkey[0] == 0x04) { // Uncompressed pubkey if (pubkey.length != 65) return false; } else if (pubkey[0] == 0x02 || pubkey[0] == 0x03) { // Compressed pubkey if (pubkey.length != 33) return false; } else return false; return true; } private static BigInteger extractPrivateKeyFromASN1(byte[] asn1privkey) { // To understand this code, see the definition of the ASN.1 format for EC private keys in the OpenSSL source // code in ec_asn1.c: // // ASN1_SEQUENCE(EC_PRIVATEKEY) = { // ASN1_SIMPLE(EC_PRIVATEKEY, version, LONG), // ASN1_SIMPLE(EC_PRIVATEKEY, privateKey, ASN1_OCTET_STRING), // ASN1_EXP_OPT(EC_PRIVATEKEY, parameters, ECPKPARAMETERS, 0), // ASN1_EXP_OPT(EC_PRIVATEKEY, publicKey, ASN1_BIT_STRING, 1) // } ASN1_SEQUENCE_END(EC_PRIVATEKEY) // try { ASN1InputStream decoder = new ASN1InputStream(asn1privkey); DLSequence seq = (DLSequence) decoder.readObject(); checkArgument(seq.size() == 4, "Input does not appear to be an ASN.1 OpenSSL EC private key"); checkArgument(((DERInteger) seq.getObjectAt(0)).getValue().equals(BigInteger.ONE), "Input is of wrong version"); Object obj = seq.getObjectAt(1); byte[] bits = ((ASN1OctetString) obj).getOctets(); decoder.close(); return new BigInteger(1, bits); } catch (IOException e) { throw new RuntimeException(e); // Cannot happen, reading from memory stream. } } /** * Signs a text message using the standard Bitcoin messaging signing format and returns the signature as a base64 * encoded string. * * @throws IllegalStateException if this ECKey does not have the private part. * @throws KeyCrypterException if this ECKey is encrypted and no AESKey is provided or it does not decrypt the ECKey. */ public String signMessage(String message) throws KeyCrypterException { return signMessage(message, null); } /** * Signs a text message using the standard Bitcoin messaging signing format and returns the signature as a base64 * encoded string. * * @throws IllegalStateException if this ECKey does not have the private part. * @throws KeyCrypterException if this ECKey is encrypted and no AESKey is provided or it does not decrypt the ECKey. */ public String signMessage(String message, @Nullable KeyParameter aesKey) throws KeyCrypterException { if (priv == null) throw new IllegalStateException("This ECKey does not have the private key necessary for signing."); byte[] data = Utils.formatMessageForSigning(message); Sha256Hash hash = Sha256Hash.createDouble(data); ECDSASignature sig = sign(hash, aesKey); // Now we have to work backwards to figure out the recId needed to recover the signature. int recId = -1; for (int i = 0; i < 4; i++) { ECKey k = ECKey.recoverFromSignature(i, sig, hash, isCompressed()); if (k != null && Arrays.equals(k.pub, pub)) { recId = i; break; } } if (recId == -1) throw new RuntimeException("Could not construct a recoverable key. This should never happen."); int headerByte = recId + 27 + (isCompressed() ? 4 : 0); byte[] sigData = new byte[65]; // 1 header + 32 bytes for R + 32 bytes for S sigData[0] = (byte)headerByte; System.arraycopy(Utils.bigIntegerToBytes(sig.r, 32), 0, sigData, 1, 32); System.arraycopy(Utils.bigIntegerToBytes(sig.s, 32), 0, sigData, 33, 32); return new String(Base64.encode(sigData), Charset.forName("UTF-8")); } /** * Given an arbitrary piece of text and a Bitcoin-format message signature encoded in base64, returns an ECKey * containing the public key that was used to sign it. This can then be compared to the expected public key to * determine if the signature was correct. These sorts of signatures are compatible with the Bitcoin-Qt/bitcoind * format generated by signmessage/verifymessage RPCs and GUI menu options. They are intended for humans to verify * their communications with each other, hence the base64 format and the fact that the input is text. * * @param message Some piece of human readable text. * @param signatureBase64 The Bitcoin-format message signature in base64 * @throws SignatureException If the public key could not be recovered or if there was a signature format error. */ public static ECKey signedMessageToKey(String message, String signatureBase64) throws SignatureException { byte[] signatureEncoded; try { signatureEncoded = Base64.decode(signatureBase64); } catch (RuntimeException e) { // This is what you get back from Bouncy Castle if base64 doesn't decode :( throw new SignatureException("Could not decode base64", e); } // Parse the signature bytes into r/s and the selector value. if (signatureEncoded.length < 65) throw new SignatureException("Signature truncated, expected 65 bytes and got " + signatureEncoded.length); int header = signatureEncoded[0] & 0xFF; // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y, // 0x1D = second key with even y, 0x1E = second key with odd y if (header < 27 || header > 34) throw new SignatureException("Header byte out of range: " + header); BigInteger r = new BigInteger(1, Arrays.copyOfRange(signatureEncoded, 1, 33)); BigInteger s = new BigInteger(1, Arrays.copyOfRange(signatureEncoded, 33, 65)); ECDSASignature sig = new ECDSASignature(r, s); byte[] messageBytes = Utils.formatMessageForSigning(message); // Note that the C++ code doesn't actually seem to specify any character encoding. Presumably it's whatever // JSON-SPIRIT hands back. Assume UTF-8 for now. Sha256Hash messageHash = Sha256Hash.createDouble(messageBytes); boolean compressed = false; if (header >= 31) { compressed = true; header -= 4; } int recId = header - 27; ECKey key = ECKey.recoverFromSignature(recId, sig, messageHash, compressed); if (key == null) throw new SignatureException("Could not recover public key from signature"); return key; } /** * Convenience wrapper around {@link ECKey#signedMessageToKey(String, String)}. If the key derived from the * signature is not the same as this one, throws a SignatureException. */ public void verifyMessage(String message, String signatureBase64) throws SignatureException { ECKey key = ECKey.signedMessageToKey(message, signatureBase64); if (!Arrays.equals(key.getPubKey(), pub)) throw new SignatureException("Signature did not match for message"); } /** *

Given the components of a signature and a selector value, recover and return the public key * that generated the signature according to the algorithm in SEC1v2 section 4.1.6.

* *

The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because * the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the * signature, or you must be willing to try each recId in turn until you find one that outputs the key you are * expecting.

* *

If this method returns null it means recovery was not possible and recId should be iterated.

* *

Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the * output is null OR a key that is not the one you expect, you try again with the next recId.

* * @param recId Which possible key to recover. * @param sig the R and S components of the signature, wrapped. * @param message Hash of the data that was signed. * @param compressed Whether or not the original pubkey was compressed. * @return An ECKey containing only the public part, or null if recovery wasn't possible. */ @Nullable public static ECKey recoverFromSignature(int recId, ECDSASignature sig, Sha256Hash message, boolean compressed) { Preconditions.checkArgument(recId >= 0, "recId must be positive"); Preconditions.checkArgument(sig.r.compareTo(BigInteger.ZERO) >= 0, "r must be positive"); Preconditions.checkArgument(sig.s.compareTo(BigInteger.ZERO) >= 0, "s must be positive"); Preconditions.checkNotNull(message); // 1.0 For j from 0 to h (h == recId here and the loop is outside this function) // 1.1 Let x = r + jn BigInteger n = CURVE.getN(); // Curve order. BigInteger i = BigInteger.valueOf((long) recId / 2); BigInteger x = sig.r.add(i.multiply(n)); // 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine // specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉. // 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the // conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then // do another iteration of Step 1. // // More concisely, what these points mean is to use X as a compressed public key. ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve(); BigInteger prime = curve.getQ(); // Bouncy Castle is not consistent about the letter it uses for the prime. if (x.compareTo(prime) >= 0) { // Cannot have point co-ordinates larger than this as everything takes place modulo Q. return null; } // Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities. // So it's encoded in the recId. ECPoint R = decompressKey(x, (recId & 1) == 1); // 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility). if (!R.multiply(n).isInfinity()) return null; // 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification. BigInteger e = message.toBigInteger(); // 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId) // 1.6.1. Compute a candidate public key as: // Q = mi(r) * (sR - eG) // // Where mi(x) is the modular multiplicative inverse. We transform this into the following: // Q = (mi(r) * s ** R) + (mi(r) * -e ** G) // Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation // ** is point multiplication and + is point addition (the EC group operator). // // We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive // inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8. BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n); BigInteger rInv = sig.r.modInverse(n); BigInteger srInv = rInv.multiply(sig.s).mod(n); BigInteger eInvrInv = rInv.multiply(eInv).mod(n); ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv); if (compressed) { // We have to manually recompress the point as the compressed-ness gets lost when multiply() is used. q = new ECPoint.Fp(curve, q.getX(), q.getY(), true); } return new ECKey((byte[])null, q.getEncoded()); } /** Decompress a compressed public key (x co-ord and low-bit of y-coord). */ private static ECPoint decompressKey(BigInteger xBN, boolean yBit) { X9IntegerConverter x9 = new X9IntegerConverter(); byte[] compEnc = x9.integerToBytes(xBN, 1 + x9.getByteLength(CURVE.getCurve())); compEnc[0] = (byte)(yBit ? 0x03 : 0x02); return CURVE.getCurve().decodePoint(compEnc); } /** * Returns a 32 byte array containing the private key, or null if the key is encrypted or public only */ @Nullable public byte[] getPrivKeyBytes() { return Utils.bigIntegerToBytes(priv, 32); } /** * Exports the private key in the form used by the Satoshi client "dumpprivkey" and "importprivkey" commands. Use * the {@link com.google.bitcoin.core.DumpedPrivateKey#toString()} method to get the string. * * @param params The network this key is intended for use on. * @return Private key bytes as a {@link DumpedPrivateKey}. * @throws IllegalStateException if the private key is not available. */ public DumpedPrivateKey getPrivateKeyEncoded(NetworkParameters params) { final byte[] privKeyBytes = getPrivKeyBytes(); checkState(privKeyBytes != null, "Private key is not available"); return new DumpedPrivateKey(params, privKeyBytes, isCompressed()); } /** * Returns the creation time of this key or zero if the key was deserialized from a version that did not store * that data. */ public long getCreationTimeSeconds() { return creationTimeSeconds; } /** * Sets the creation time of this key. Zero is a convention to mean "unavailable". This method can be useful when * you have a raw key you are importing from somewhere else. */ public void setCreationTimeSeconds(long newCreationTimeSeconds) { if (newCreationTimeSeconds < 0) throw new IllegalArgumentException("Cannot set creation time to negative value: " + newCreationTimeSeconds); creationTimeSeconds = newCreationTimeSeconds; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; ECKey ecKey = (ECKey) o; return Arrays.equals(pub, ecKey.pub); } @Override public int hashCode() { // Public keys are random already so we can just use a part of them as the hashcode. Read from the start to // avoid picking up the type code (compressed vs uncompressed) which is tacked on the end. return (pub[0] & 0xFF) | ((pub[1] & 0xFF) << 8) | ((pub[2] & 0xFF) << 16) | ((pub[3] & 0xFF) << 24); } /** * Create an encrypted private key with the keyCrypter and the AES key supplied. * This method returns a new encrypted key and leaves the original unchanged. * To be secure you need to clear the original, unencrypted private key bytes. * * @param keyCrypter The keyCrypter that specifies exactly how the encrypted bytes are created. * @param aesKey The KeyParameter with the AES encryption key (usually constructed with keyCrypter#deriveKey and cached as it is slow to create). * @return encryptedKey */ public ECKey encrypt(KeyCrypter keyCrypter, KeyParameter aesKey) throws KeyCrypterException { Preconditions.checkNotNull(keyCrypter); final byte[] privKeyBytes = getPrivKeyBytes(); checkState(privKeyBytes != null, "Private key is not available"); EncryptedPrivateKey encryptedPrivateKey = keyCrypter.encrypt(privKeyBytes, aesKey); ECKey result = new ECKey(encryptedPrivateKey, getPubKey(), keyCrypter); result.setCreationTimeSeconds(creationTimeSeconds); return result; } /** * Create a decrypted private key with the keyCrypter and AES key supplied. Note that if the aesKey is wrong, this * has some chance of throwing KeyCrypterException due to the corrupted padding that will result, but it can also * just yield a garbage key. * * @param keyCrypter The keyCrypter that specifies exactly how the decrypted bytes are created. * @param aesKey The KeyParameter with the AES encryption key (usually constructed with keyCrypter#deriveKey and cached). * @return unencryptedKey */ public ECKey decrypt(KeyCrypter keyCrypter, KeyParameter aesKey) throws KeyCrypterException { Preconditions.checkNotNull(keyCrypter); // Check that the keyCrypter matches the one used to encrypt the keys, if set. if (this.keyCrypter != null && !this.keyCrypter.equals(keyCrypter)) { throw new KeyCrypterException("The keyCrypter being used to decrypt the key is different to the one that was used to encrypt it"); } byte[] unencryptedPrivateKey = keyCrypter.decrypt(encryptedPrivateKey, aesKey); ECKey key = new ECKey(new BigInteger(1, unencryptedPrivateKey), null, isCompressed()); if (!Arrays.equals(key.getPubKey(), getPubKey())) throw new KeyCrypterException("Provided AES key is wrong"); key.setCreationTimeSeconds(creationTimeSeconds); return key; } /** * Check that it is possible to decrypt the key with the keyCrypter and that the original key is returned. * * Because it is a critical failure if the private keys cannot be decrypted successfully (resulting of loss of all bitcoins controlled * by the private key) you can use this method to check when you *encrypt* a wallet that it can definitely be decrypted successfully. * See {@link Wallet#encrypt(KeyCrypter keyCrypter, KeyParameter aesKey)} for example usage. * * @return true if the encrypted key can be decrypted back to the original key successfully. */ public static boolean encryptionIsReversible(ECKey originalKey, ECKey encryptedKey, KeyCrypter keyCrypter, KeyParameter aesKey) { String genericErrorText = "The check that encryption could be reversed failed for key " + originalKey.toString() + ". "; try { ECKey rebornUnencryptedKey = encryptedKey.decrypt(keyCrypter, aesKey); if (rebornUnencryptedKey == null) { log.error(genericErrorText + "The test decrypted key was missing."); return false; } byte[] originalPrivateKeyBytes = originalKey.getPrivKeyBytes(); if (originalPrivateKeyBytes != null) { if (rebornUnencryptedKey.getPrivKeyBytes() == null) { log.error(genericErrorText + "The test decrypted key was missing."); return false; } else { if (originalPrivateKeyBytes.length != rebornUnencryptedKey.getPrivKeyBytes().length) { log.error(genericErrorText + "The test decrypted private key was a different length to the original."); return false; } else { for (int i = 0; i < originalPrivateKeyBytes.length; i++) { if (originalPrivateKeyBytes[i] != rebornUnencryptedKey.getPrivKeyBytes()[i]) { log.error(genericErrorText + "Byte " + i + " of the private key did not match the original."); return false; } } } } } } catch (KeyCrypterException kce) { log.error(kce.getMessage()); return false; } // Key can successfully be decrypted. return true; } /** * Indicates whether the private key is encrypted (true) or not (false). * A private key is deemed to be encrypted when there is both a KeyCrypter and the encryptedPrivateKey is non-zero. */ public boolean isEncrypted() { return keyCrypter != null && encryptedPrivateKey != null && encryptedPrivateKey.getEncryptedBytes() != null && encryptedPrivateKey.getEncryptedBytes().length > 0; } /** * @return The encryptedPrivateKey (containing the encrypted private key bytes and initialisation vector) for this ECKey, * or null if the ECKey is not encrypted. */ @Nullable public EncryptedPrivateKey getEncryptedPrivateKey() { if (encryptedPrivateKey == null) { return null; } else { return encryptedPrivateKey.clone(); } } /** * @return The KeyCrypter that was used to encrypt to encrypt this ECKey. You need this to decrypt the ECKey. */ public KeyCrypter getKeyCrypter() { return keyCrypter; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy