![JAR search and dependency download from the Maven repository](/logo.png)
com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic.IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver Maven / Gradle / Ivy
Show all versions of aic-expresso Show documentation
/*
* Copyright (c) 2013, SRI International
* All rights reserved.
* Licensed under the The BSD 3-Clause License;
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://opensource.org/licenses/BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the aic-expresso nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic;
import static com.sri.ai.expresso.helper.Expressions.apply;
import static com.sri.ai.grinder.sgdpllt.library.set.Sets.EMPTY_SET;
import static com.sri.ai.util.Util.getFirst;
import com.google.common.annotations.Beta;
import com.sri.ai.expresso.api.Expression;
import com.sri.ai.expresso.core.DefaultExtensionalUniSet;
import com.sri.ai.grinder.sgdpllt.api.Context;
import com.sri.ai.grinder.sgdpllt.library.FunctorConstants;
import com.sri.ai.grinder.sgdpllt.theory.numeric.AbstractSingleVariableNumericConstraintFeasibilityRegionStepSolver;
/**
* A step solver computing an interval of values for the variable of
* a single-variable linear arithmetic constraint
* that has the same measure as its set of solutions,
* which is an interval minus the distinct disequals (which have measure zero).
*
* In other words, given the set of solutions [a;b] \ {d_1,...,d_n}
,
* this step solver returns [a;b]
(and analogously for open bounds),
* which has the same measure.
* @author braz
*
*/
@Beta
public class IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver extends AbstractSingleVariableLinearRealArithmeticConstraintFeasibilityRegionStepSolver {
public IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver(SingleVariableLinearRealArithmeticConstraint constraint) {
super(constraint);
}
@Override
public IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver clone() {
return (IntervalWithMeasureEquivalentToSingleVariableLinearRealArithmeticConstraintStepSolver) super.clone();
}
@Override
protected Step getSolutionStepAfterBoundsAreCheckedForFeasibility(Expression lowerBound, Expression upperBound, AbstractSingleVariableNumericConstraintFeasibilityRegionStepSolver sequelBase, Context context) {
boolean lowerBoundIsStrict = getMapFromLowerBoundsToStrictness(context).get(lowerBound);
boolean upperBoundIsStrict = getMapFromUpperBoundsToStrictness(context).get(upperBound);
Expression solutionExpression;
if (lowerBoundIsStrict && upperBoundIsStrict) {
solutionExpression = apply(FunctorConstants.REAL_INTERVAL_OPEN_OPEN, lowerBound, upperBound);
}
else if (!lowerBoundIsStrict && upperBoundIsStrict) {
solutionExpression = apply(FunctorConstants.REAL_INTERVAL_CLOSED_OPEN, lowerBound, upperBound);
}
else if (lowerBoundIsStrict && !upperBoundIsStrict) {
solutionExpression = apply(FunctorConstants.REAL_INTERVAL_OPEN_CLOSED, lowerBound, upperBound);
}
else {
solutionExpression = apply(FunctorConstants.REAL_INTERVAL_CLOSED_CLOSED, lowerBound, upperBound);
}
return new Solution(solutionExpression);
}
@Override
public boolean unboundedVariableProducesShortCircuitSolution() {
return false;
}
@Override
public Expression getSolutionExpressionForUnboundedVariables() {
throw new Error("getSolutionExpressionForUnboundedVariables should not be used because just knowing that the variable is unbounded is not enough to determine value set");
}
@Override
public Expression getSolutionExpressionForBoundVariable() {
Expression oneOfTheVariableValues = getFirst(getEquals());
DefaultExtensionalUniSet result = new DefaultExtensionalUniSet(oneOfTheVariableValues);
return result;
}
@Override
protected Expression getSolutionExpressionGivenContradiction() {
return EMPTY_SET;
}
}