Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2013, SRI International
* All rights reserved.
* Licensed under the The BSD 3-Clause License;
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://opensource.org/licenses/BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the aic-expresso nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.sri.ai.grinder.sgdpllt.theory.linearrealarithmetic;
import static com.sri.ai.expresso.helper.Expressions.INFINITY;
import static com.sri.ai.expresso.helper.Expressions.apply;
import static com.sri.ai.grinder.sgdpllt.library.FunctorConstants.GREATER_THAN;
import static com.sri.ai.grinder.sgdpllt.library.FunctorConstants.LESS_THAN;
import static com.sri.ai.util.Util.list;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import com.google.common.annotations.Beta;
import com.sri.ai.expresso.api.Expression;
import com.sri.ai.expresso.api.Type;
import com.sri.ai.expresso.type.RealExpressoType;
import com.sri.ai.expresso.type.RealInterval;
import com.sri.ai.grinder.sgdpllt.api.Context;
import com.sri.ai.grinder.sgdpllt.api.Theory;
import com.sri.ai.grinder.sgdpllt.library.number.UnaryMinus;
import com.sri.ai.grinder.sgdpllt.theory.numeric.AbstractSingleVariableNumericConstraint;
/**
* A linear real arithmetic single-variable constraint solver.
*
* @author braz
*
*/
@Beta
public class SingleVariableLinearRealArithmeticConstraint extends AbstractSingleVariableNumericConstraint {
private static final long serialVersionUID = 1L;
public SingleVariableLinearRealArithmeticConstraint(
Expression variable,
boolean propagateAllLiteralsWhenVariableIsBound,
Theory theory) {
super(variable, propagateAllLiteralsWhenVariableIsBound, theory);
}
private SingleVariableLinearRealArithmeticConstraint(
Expression variable,
ArrayList positiveNormalizedAtoms,
ArrayList negativeNormalizedAtoms,
List externalLiterals,
boolean propagateAllLiteralsWhenVariableIsBound,
Theory theory) {
super(variable, positiveNormalizedAtoms, negativeNormalizedAtoms, externalLiterals, propagateAllLiteralsWhenVariableIsBound, theory);
}
public SingleVariableLinearRealArithmeticConstraint(SingleVariableLinearRealArithmeticConstraint other) {
super(other);
}
@Override
public SingleVariableLinearRealArithmeticConstraint clone() {
SingleVariableLinearRealArithmeticConstraint result = new SingleVariableLinearRealArithmeticConstraint(this);
return result;
}
@Override
protected SingleVariableLinearRealArithmeticConstraint makeSimplification(ArrayList positiveNormalizedAtoms, ArrayList negativeNormalizedAtoms, List externalLiterals) {
// no special bookkeeping to be retained in simplifications, so we just make a new constraint.
SingleVariableLinearRealArithmeticConstraint result = new SingleVariableLinearRealArithmeticConstraint(getVariable(), positiveNormalizedAtoms, negativeNormalizedAtoms, externalLiterals, getPropagateAllLiteralsWhenVariableIsBound(), getTheory());
return result;
}
@Override
protected Expression isolateVariable(Expression atom, Context context) {
Expression result = LinearRealArithmeticUtil.isolateVariable(getVariable(), atom);
return result;
}
List cachedImplicitPositiveNormalizedAtoms;
@Override
/**
* Returns iterator ranging over implicit positive normalized atoms representing variable bounds.
*/
protected Iterator getImplicitPositiveNormalizedAtomsIterator(Context context) {
if (cachedImplicitPositiveNormalizedAtoms == null) {
RealInterval interval = getType(context);
Expression lowerBound = interval.getLowerBound();
cachedImplicitPositiveNormalizedAtoms = list();
if (interval.lowerBoundIsOpen() && !lowerBound.equals("unknown") && !lowerBound.equals(UnaryMinus.make(INFINITY))) {
cachedImplicitPositiveNormalizedAtoms.add(apply(GREATER_THAN, getVariable(), lowerBound));
}
Expression upperBound = interval.getUpperBound();
if (interval.upperBoundIsOpen() && !upperBound.equals("unknown") && !upperBound.equals(INFINITY)) {
cachedImplicitPositiveNormalizedAtoms.add(apply(LESS_THAN, getVariable(), upperBound));
}
}
return cachedImplicitPositiveNormalizedAtoms.iterator();
}
List cachedImplicitNegativeNormalizedAtoms;
@Override
/**
* Returns iterator ranging over implicit negative normalized atoms representing variable bounds.
*/
protected Iterator getImplicitNegativeNormalizedAtomsIterator(Context context) {
if (cachedImplicitNegativeNormalizedAtoms == null) {
RealInterval interval = getType(context);
Expression lowerBound = interval.getLowerBound();
cachedImplicitNegativeNormalizedAtoms = list();
if (!interval.lowerBoundIsOpen() && !lowerBound.equals("unknown") && !lowerBound.equals(UnaryMinus.make(INFINITY))) {
cachedImplicitNegativeNormalizedAtoms.add(apply(LESS_THAN, getVariable(), lowerBound));
// this is the negation of variable >= nonStrictLowerBound. We need to use a negative normalized atom because applications of >= are not considered normalized atoms
}
Expression upperBound = interval.getUpperBound();
if (!interval.upperBoundIsOpen() && !upperBound.equals("unknown") && !upperBound.equals(INFINITY)) {
cachedImplicitNegativeNormalizedAtoms.add(apply(GREATER_THAN, getVariable(), upperBound));
// this is the negation of variable <= nonStrictUpperBound. We need to use a negative normalized atom because applications of <= are not considered normalized atoms
}
}
return cachedImplicitNegativeNormalizedAtoms.iterator();
}
private RealInterval cachedType;
/**
* Returns the {@link RealInterval} type of the constraint's variable.
* @param context
* @return
*/
public RealInterval getType(Context context) {
if (cachedType == null) {
Expression variableTypeExpression = getVariableTypeExpression(context);
Type type = context.getTypeFromTypeExpression(variableTypeExpression);
if (type instanceof RealExpressoType) {
cachedType = new RealInterval("]-infinity;infinity[");
// represents Real as real interval for uniformity
}
else {
cachedType = (RealInterval) type;
}
}
return cachedType ;
}
@Override
public boolean variableIsIntegerTyped() {
return false;
}
}