com.sri.ai.util.math.BigIntegerNumberApproximate Maven / Gradle / Ivy
/*
* Copyright (c) 2017, SRI International
* All rights reserved.
* Licensed under the The BSD 3-Clause License;
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://opensource.org/licenses/BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* Neither the name of the aic-util nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.sri.ai.util.math;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
/**
* An implementation of BigIntegerNumber with approximate semantics.
*
* Intended for use internally by Rational.
*
* @author oreilly
*
*/
public class BigIntegerNumberApproximate extends BigIntegerNumber {
private static final long serialVersionUID = 1L;
//
// NOTE: loge = is used to indicate natural logarithm, i.e. log base e.
private static final double LOGE_2 = Math.log(2);
private static final double LOGE_10 = Math.log(10);
private static final double LOG2_10 = log2(10);
//
// NOTE: Based on BigDecimal restrictions on pow(int) argument.
private static int MAX_INT_EXPONENT_VALUE = 999999999;
//
private BigDecimal value;
private MathContext mathContext;
public BigIntegerNumberApproximate(BigDecimal value, MathContext mathContext) {
this.value = value;
this.mathContext = mathContext;
}
public BigIntegerNumberApproximate(long val, MathContext mathContext) {
this.value = new BigDecimal(val, mathContext);
this.mathContext = mathContext;
}
public BigIntegerNumberApproximate(String strNumber, int radix, MathContext mathContext) {
this.value = new BigDecimal(new BigInteger(strNumber, radix), mathContext);
this.mathContext = mathContext;
}
//
// Object
@Override
public boolean equals(Object o) {
boolean result = false;
if (o instanceof BigIntegerNumber) {
result = value.equals(approx((BigIntegerNumber)o));
}
return result;
}
@Override
public int hashCode() {
int result = value.hashCode();
return result;
}
@Override
public String toString() {
String result = value.toString();
return result;
}
//
// Number
@Override
public int intValue() {
int result = value.intValue();
return result;
}
@Override
public long longValue() {
long result = value.longValue();
return result;
}
@Override
public float floatValue() {
float result = value.floatValue();
return result;
}
@Override
public double doubleValue() {
double result = value.doubleValue();
return result;
}
//
// Comparable
@Override
public int compareTo(BigIntegerNumber o) {
int result = value.compareTo(approx(o));
return result;
}
//
// BigIntegerNumber
@Override
public BigIntegerNumber abs() {
BigIntegerNumber result = this;
if (value.signum() < 0) {
result = new BigIntegerNumberApproximate(value.abs(), mathContext);
}
return result;
}
@Override
public BigIntegerNumber add(BigIntegerNumber val) {
BigDecimal sum = value.add(approx(val), mathContext);
BigIntegerNumber result = new BigIntegerNumberApproximate(sum, mathContext);
return result;
}
@Override
public int bitLength() {
// NOTE BigInteger.bitLength() is computed as:
// ceil(log2(this < 0 ? -this : this+1))
int result;
if (value.signum() == 0) {
result = 0;
}
else if (value.signum() > 0) {
// Note: computing this way. i.e.: floor(log2(n)) + 1
// see : http://www.exploringbinary.com/number-of-bits-in-a-decimal-integer/
// avoids the 'this+1'.
double log2_value = log2BigDecimal(approxUnscaledDoubleValue(value), value);
result = Math.addExact((int) Math.floor(log2_value), 1);
}
else { // Negative case conforms to BigInteger.bitLength() computation method.
double log2_value = log2BigDecimal(approxUnscaledDoubleValue(value)*-1, value);
result = (int) Math.ceil(log2_value);
}
return result;
}
@Override
public BigIntegerNumber divide(BigIntegerNumber val) {
BigDecimal divisor = approx(val);
BigDecimal quotient = value.divide(divisor, new MathContext(mathContext.getPrecision(), RoundingMode.DOWN));
if (quotient.scale() > 0) {
quotient = quotient.setScale(0, RoundingMode.DOWN);
}
BigIntegerNumber result = new BigIntegerNumberApproximate(quotient, mathContext);
return result;
}
@Override
public BigIntegerNumber[] divideAndRemainder(BigIntegerNumber val) {
BigDecimal divisor = approx(val);
BigDecimal quotient = value.divide(divisor, new MathContext(mathContext.getPrecision(), RoundingMode.DOWN));
if (quotient.scale() > 0) {
quotient = quotient.setScale(0, RoundingMode.DOWN);
}
BigDecimal remainder = value.subtract(quotient.multiply(divisor, mathContext), mathContext);
BigIntegerNumber[] result = new BigIntegerNumber[] {
new BigIntegerNumberApproximate(quotient, mathContext),
new BigIntegerNumberApproximate(remainder, mathContext)
};
return result;
}
@Override
public BigIntegerNumber gcd(BigIntegerNumber otherVal) {
BigDecimal thisValue = this.value;
BigDecimal otherValue = approx(otherVal);
BigDecimal gcd = gcd(thisValue, otherValue, mathContext);
BigIntegerNumber result = new BigIntegerNumberApproximate(gcd, mathContext);
return result;
}
@Override
public int intValueExact() {
int result = value.intValueExact();
return result;
}
@Override
public BigIntegerNumber multiply(BigIntegerNumber val) {
BigDecimal product = value.multiply(approx(val), mathContext);
BigIntegerNumber result = new BigIntegerNumberApproximate(product, mathContext);
return result;
}
@Override
public BigIntegerNumber negate() {
BigIntegerNumber result = new BigIntegerNumberApproximate(value.negate(), mathContext);
return result;
}
@Override
public BigIntegerNumber pow(int exponent) {
if (exponent < 0) {
// We are simulating a big integer, not a big decimal
throw new ArithmeticException("Negative exponent");
}
BigIntegerNumber result;
if (exponent > MAX_INT_EXPONENT_VALUE) {
result = powLargeIntExponent(exponent);
}
else {
BigDecimal pow = value.pow(exponent, mathContext);
result = new BigIntegerNumberApproximate(pow, mathContext);
}
return result;
}
// Is a value outside the range BigDecimal.pow allows, so we have break it apart as follows:
// (b^m)^(e / m) * b^(e % m)
// NOTE:
// m = Max positive exponent value allowed.
// e = Exponent (is positive)
// b = Base (i.e. this)
private BigIntegerNumber powLargeIntExponent(int exponent) {
int exponentQuotient = exponent / MAX_INT_EXPONENT_VALUE;
int exponentRemainder = exponent % MAX_INT_EXPONENT_VALUE;
// b^m
BigDecimal quotientBase = value.pow(MAX_INT_EXPONENT_VALUE, mathContext);
// (b^m)^(e / m)
BigDecimal commonFactorsPow = quotientBase.pow(Math.abs(exponentQuotient), mathContext);
// b^(e % m)
BigDecimal basePowExpRemainder = value.pow(exponentRemainder, mathContext);
// (b^m)^(e / m) * b^(e % m)
BigDecimal pow = commonFactorsPow.multiply(basePowExpRemainder, mathContext);
BigIntegerNumber result = new BigIntegerNumberApproximate(pow, mathContext);
return result;
}
@Override
public BigIntegerNumber remainder(BigIntegerNumber val) {
BigIntegerNumber result = divideAndRemainder(val)[1];
return result;
}
@Override
public int signum() {
int result = value.signum();
return result;
}
@Override
public BigDecimal log(MathContext logMathContext) {
if (value.signum() == -1) {
throw new UnsupportedOperationException("Cannot compute the log for a negative number: "+value.toEngineeringString());
}
double log = logeBigDecimal(approxUnscaledDoubleValue(value), value);
BigDecimal result = new BigDecimal(log, logMathContext);
return result;
}
@Override
public BigIntegerNumber subtract(BigIntegerNumber val) {
BigDecimal difference = value.subtract(approx(val), mathContext);
BigIntegerNumber result = new BigIntegerNumberApproximate(difference, mathContext);
return result;
}
@Override
public String toString(int radix) {
String result;
if (radix == 10) {
result = value.toPlainString();
}
else {
result = value.toBigIntegerExact().toString(radix);
}
return result;
}
BigIntegerNumberExact toBigIntegerNumberExact() {
BigIntegerNumberExact result = new BigIntegerNumberExact(value.toBigIntegerExact());
return result;
}
private BigDecimal approx(BigIntegerNumber val) {
BigDecimal result;
if (val instanceof BigIntegerNumberApproximate) {
result = ((BigIntegerNumberApproximate) val).value;
}
else {
result = ((BigIntegerNumberExact)val).toBigIntegerNumberApproximate(mathContext).value;
}
return result;
}
private BigDecimal gcd(BigDecimal a, BigDecimal b, MathContext mathContext) {
BigDecimal result = null;
if (a.signum() == 0) {
result = b.abs();
}
else if (b.signum() == 0) {
result = a.abs();
}
else if (a.compareTo(b) == 0) {
result = a; // i.e. they are the same, pick either one
}
else {
// Handle cases where, the precision digits do
// not have a common factor, e.g.:
// gcd(25, 190), with precision = 2.
// Note: both need to be incremented if possible to
// handle cases like:
// gcd(260, 190)
a = incScaleIfPossible(a);
b = incScaleIfPossible(b);
BigInteger aUnscaled = a.unscaledValue();
BigInteger bUnscaled = b.unscaledValue();
BigInteger gcd = aUnscaled.gcd(bUnscaled);
// Scales will be <= 0 as we are representing big integers (i.e. -scale used).
int gcdScale = Math.max(a.scale(), b.scale());
BigDecimal scaledGCD = new BigDecimal(gcd, gcdScale, mathContext);
if (!BigDecimal.ONE.equals(scaledGCD)) {
// Note: On recursive factored gcd call we need to increase the precision by 1 so that we don't loose information,
// e.g.: precision = 2, gcd(6,2300). It will find 2 but 2300/2 = 1150, which is 3 digits of precision, and if
// that is rounded you end up getting another gcd != 1.
MathContext mathContextPlusOnePrecision;
if (mathContext.getPrecision() == 0) {
// i.e. 0 indicates infinite precision
mathContextPlusOnePrecision = mathContext;
}
else {
mathContextPlusOnePrecision = new MathContext(mathContext.getPrecision()+1, mathContext.getRoundingMode());
}
BigDecimal factoredAValue = a.divide(scaledGCD, mathContextPlusOnePrecision);
BigDecimal factoredBValue = b.divide(scaledGCD, mathContextPlusOnePrecision);
BigDecimal factoredGCD = gcd(factoredAValue, factoredBValue, mathContextPlusOnePrecision);
scaledGCD = scaledGCD.multiply(factoredGCD, mathContext);
}
result = scaledGCD;
}
return result;
}
private BigDecimal incScaleIfPossible(BigDecimal bd) {
BigDecimal result = bd;
if (bd.scale() < 0) {
result = bd.setScale(bd.scale()+1);
}
return result;
}
// To convert to log2 using loge:
// log2(value) = loge(value)/loge(2)
private static double log2(double value) {
double result = Math.log(value) / LOGE_2;
return result;
}
// To compute loge of BigDecimal:
// value = unscaled*10^(-scale)
// loge(value) = loge(unscaled*10^(-scale)) = loge(unscaled) + (-scale)*loge(10)
private static double logeBigDecimal(double approxUnscaledValueOfBigDecimal, BigDecimal bigDecimalValue) {
double loge_unscaled = Math.log(approxUnscaledValueOfBigDecimal);
double result = loge_unscaled+((-bigDecimalValue.scale())*LOGE_10);
return result;
}
// To compute log2 of BigDecimal:
// value = unscaled*10^(-scale)
// log2(value) = log2(unscaled*10^(-scale)) = log2(unscaled) + (-scale)*log2(10)
private static double log2BigDecimal(double approxUnscaledValueOfBigDecimal, BigDecimal bigDecimalValue) {
double log2_unscaled = log2(approxUnscaledValueOfBigDecimal);
double result = log2_unscaled+((-bigDecimalValue.scale())*LOG2_10);
return result;
}
private static double approxUnscaledDoubleValue(BigDecimal value) {
double result;
if (value.precision() > 307) {
// Note: loss of information here
result = new BigDecimal(value.unscaledValue(), value.scale(), new MathContext(307)).unscaledValue().doubleValue();
}
else {
result = value.unscaledValue().doubleValue();
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy