
aima.core.search.adversarial.MinimaxSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aima-core Show documentation
Show all versions of aima-core Show documentation
AIMA-Java Core Algorithms from the book Artificial Intelligence a Modern Approach 3rd Ed.
package aima.core.search.adversarial;
import aima.core.search.framework.Metrics;
/**
* Artificial Intelligence A Modern Approach (3rd Edition): page 169.
*
*
*
* function MINIMAX-DECISION(state) returns an action
* return argmax_[a in ACTIONS(s)] MIN-VALUE(RESULT(state, a))
*
* function MAX-VALUE(state) returns a utility value
* if TERMINAL-TEST(state) then return UTILITY(state)
* v = -infinity
* for each a in ACTIONS(state) do
* v = MAX(v, MIN-VALUE(RESULT(s, a)))
* return v
*
* function MIN-VALUE(state) returns a utility value
* if TERMINAL-TEST(state) then return UTILITY(state)
* v = infinity
* for each a in ACTIONS(state) do
* v = MIN(v, MAX-VALUE(RESULT(s, a)))
* return v
*
*
*
* Figure 5.3 An algorithm for calculating minimax decisions. It returns the
* action corresponding to the best possible move, that is, the move that leads
* to the outcome with the best utility, under the assumption that the opponent
* plays to minimize utility. The functions MAX-VALUE and MIN-VALUE go through
* the whole game tree, all the way to the leaves, to determine the backed-up
* value of a state. The notation argmax_[a in S] f(a) computes the element a of
* set S that has the maximum value of f(a).
*
*
* @author Ruediger Lunde
*
* @param
* Type which is used for states in the game.
* @param
* Type which is used for actions in the game.
* @param
* Type which is used for players in the game.
*/
public class MinimaxSearch implements
AdversarialSearch {
private Game game;
private int expandedNodes;
/** Creates a new search object for a given game. */
public static MinimaxSearch createFor(
Game game) {
return new MinimaxSearch(game);
}
public MinimaxSearch(Game game) {
this.game = game;
}
@Override
public ACTION makeDecision(STATE state) {
expandedNodes = 0;
ACTION result = null;
double resultValue = Double.NEGATIVE_INFINITY;
PLAYER player = game.getPlayer(state);
for (ACTION action : game.getActions(state)) {
double value = minValue(game.getResult(state, action), player);
if (value > resultValue) {
result = action;
resultValue = value;
}
}
return result;
}
public double maxValue(STATE state, PLAYER player) { // returns an utility
// value
expandedNodes++;
if (game.isTerminal(state))
return game.getUtility(state, player);
double value = Double.NEGATIVE_INFINITY;
for (ACTION action : game.getActions(state))
value = Math.max(value,
minValue(game.getResult(state, action), player));
return value;
}
public double minValue(STATE state, PLAYER player) { // returns an utility
// value
expandedNodes++;
if (game.isTerminal(state))
return game.getUtility(state, player);
double value = Double.POSITIVE_INFINITY;
for (ACTION action : game.getActions(state))
value = Math.min(value,
maxValue(game.getResult(state, action), player));
return value;
}
@Override
public Metrics getMetrics() {
Metrics result = new Metrics();
result.set("expandedNodes", expandedNodes);
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy