aima.core.learning.knowledge.CurrentBestLearning Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aima-core Show documentation
Show all versions of aima-core Show documentation
AIMA-Java Core Algorithms from the book Artificial Intelligence a Modern Approach 3rd Ed.
package aima.core.learning.knowledge;
import java.util.List;
import aima.core.logic.fol.kb.FOLKnowledgeBase;
/**
* Artificial Intelligence A Modern Approach (3rd Edition): Figure 19.2, page
* 771.
*
*
*
* function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail
*
* if examples is empty then
* return h
* e <- FIRST(examples)
* if e is consistent with h then
* return CURRENT-BEST-LEARNING(REST(examples), h)
* else if e is a false positive for h then
* for each h' in specializations of h consistent with examples seen so far do
* h'' <- CURRENT-BEST-LEARNING(REST(examples), h')
* if h'' != fail then return h''
* else if e is a false negative for h then
* for each h' in generalization of h consistent with examples seen so far do
* h'' <- CURRENT-BEST-LEARNING(REST(examples), h')
* if h'' != fail then return h''
* return fail
*
*
* Figure 19.2 The current-best-hypothesis learning algorithm. It searches for a
* consistent hypothesis that fits all the examples and backtracks when no
* consistent specialization/generalization can be found. To start the
* algorithm, any hypothesis can be passed in; it will be specialized or
* generalized as needed.
*
* @author Ciaran O'Reilly
*
*/
public class CurrentBestLearning {
@SuppressWarnings("unused")
private FOLDataSetDomain folDSDomain = null;
private FOLKnowledgeBase kbForLearning = null;
//
// PUBLIC METHODS
//
public CurrentBestLearning(FOLDataSetDomain folDSDomain,
FOLKnowledgeBase kbForLearning) {
this.folDSDomain = folDSDomain;
this.kbForLearning = kbForLearning;
}
// TODO - Implement!!!
public Hypothesis currentBestLearning(List examples) {
// TODO-use the default from pg 769 for now.
String c1 = "patrons(v,Some)";
String c2 = "patrons(v,Full) AND (hungry(v) AND type(v,French))";
String c3 = "patrons(v,Full) AND (hungry(v) AND (type(v,Thai) AND fri_sat(v)))";
String c4 = "patrons(v,Full) AND (hungry(v) AND type(v,Burger))";
String sh = "FORALL v (will_wait(v) <=> (" + c1 + " OR (" + c2
+ " OR (" + c3 + " OR (" + c4 + ")))))";
Hypothesis h = new Hypothesis(kbForLearning.tell(sh));
return h;
}
//
// PRIVATE METHODS
//
}