All Downloads are FREE. Search and download functionalities are using the official Maven repository.

aima.core.learning.knowledge.CurrentBestLearning Maven / Gradle / Ivy

Go to download

AIMA-Java Core Algorithms from the book Artificial Intelligence a Modern Approach 3rd Ed.

There is a newer version: 3.0.0
Show newest version
package aima.core.learning.knowledge;

import java.util.List;

import aima.core.logic.fol.kb.FOLKnowledgeBase;

/**
 * Artificial Intelligence A Modern Approach (3rd Edition): Figure 19.2, page
 * 771.
*
* *
 * function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail
 * 
 *   if examples is empty then
 *      return h
 *   e <- FIRST(examples)
 *   if e is consistent with h then
 *      return CURRENT-BEST-LEARNING(REST(examples), h)
 *   else if e is a false positive for h then
 *     for each h' in specializations of h consistent with examples seen so far do
 *       h'' <- CURRENT-BEST-LEARNING(REST(examples), h')
 *       if h'' != fail then return h''
 *   else if e is a false negative for h then
 *     for each h' in generalization of h consistent with examples seen so far do
 *       h'' <- CURRENT-BEST-LEARNING(REST(examples), h')
 *       if h'' != fail then return h''
 *   return fail
 * 
* * Figure 19.2 The current-best-hypothesis learning algorithm. It searches for a * consistent hypothesis that fits all the examples and backtracks when no * consistent specialization/generalization can be found. To start the * algorithm, any hypothesis can be passed in; it will be specialized or * generalized as needed. * * @author Ciaran O'Reilly * */ public class CurrentBestLearning { @SuppressWarnings("unused") private FOLDataSetDomain folDSDomain = null; private FOLKnowledgeBase kbForLearning = null; // // PUBLIC METHODS // public CurrentBestLearning(FOLDataSetDomain folDSDomain, FOLKnowledgeBase kbForLearning) { this.folDSDomain = folDSDomain; this.kbForLearning = kbForLearning; } // TODO - Implement!!! public Hypothesis currentBestLearning(List examples) { // TODO-use the default from pg 769 for now. String c1 = "patrons(v,Some)"; String c2 = "patrons(v,Full) AND (hungry(v) AND type(v,French))"; String c3 = "patrons(v,Full) AND (hungry(v) AND (type(v,Thai) AND fri_sat(v)))"; String c4 = "patrons(v,Full) AND (hungry(v) AND type(v,Burger))"; String sh = "FORALL v (will_wait(v) <=> (" + c1 + " OR (" + c2 + " OR (" + c3 + " OR (" + c4 + ")))))"; Hypothesis h = new Hypothesis(kbForLearning.tell(sh)); return h; } // // PRIVATE METHODS // }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy