All Downloads are FREE. Search and download functionalities are using the official Maven repository.

aima.core.search.adversarial.AlphaBetaSearch Maven / Gradle / Ivy

Go to download

AIMA-Java Core Algorithms from the book Artificial Intelligence a Modern Approach 3rd Ed.

There is a newer version: 3.0.0
Show newest version
package aima.core.search.adversarial;

import aima.core.search.framework.Metrics;

/**
 * Artificial Intelligence A Modern Approach (3rd Ed.): Page 173.
* *
 * 
 * function ALPHA-BETA-SEARCH(state) returns an action
 *   v = MAX-VALUE(state, -infinity, +infinity)
 *   return the action in ACTIONS(state) with value v
 *   
 * function MAX-VALUE(state, alpha, beta) returns a utility value
 *   if TERMINAL-TEST(state) then return UTILITY(state)
 *   v = -infinity
 *   for each a in ACTIONS(state) do
 *     v = MAX(v, MIN-VALUE(RESULT(s, a), alpha, beta))
 *     if v >= beta then return v
 *     alpha = MAX(alpha, v)
 *   return v
 *   
 * function MIN-VALUE(state, alpha, beta) returns a utility value
 *   if TERMINAL-TEST(state) then return UTILITY(state)
 *   v = infinity
 *   for each a in ACTIONS(state) do
 *     v = MIN(v, MAX-VALUE(RESULT(s,a), alpha, beta))
 *     if v <= alpha then return v
 *     beta = MIN(beta, v)
 *   return v
 * 
 * 
* * Figure 5.7 The alpha-beta search algorithm. Notice that these routines are * the same as the MINIMAX functions in Figure 5.3, except for the two lines in * each of MIN-VALUE and MAX-VALUE that maintain alpha and beta (and the * bookkeeping to pass these parameters along). * * @author Ruediger Lunde * * @param * Type which is used for states in the game. * @param * Type which is used for actions in the game. * @param * Type which is used for players in the game. */ public class AlphaBetaSearch implements AdversarialSearch { Game game; private int expandedNodes; /** Creates a new search object for a given game. */ public static AlphaBetaSearch createFor( Game game) { return new AlphaBetaSearch(game); } public AlphaBetaSearch(Game game) { this.game = game; } @Override public ACTION makeDecision(STATE state) { expandedNodes = 0; ACTION result = null; double resultValue = Double.NEGATIVE_INFINITY; PLAYER player = game.getPlayer(state); for (ACTION action : game.getActions(state)) { double value = minValue(game.getResult(state, action), player, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY); if (value > resultValue) { result = action; resultValue = value; } } return result; } public double maxValue(STATE state, PLAYER player, double alpha, double beta) { expandedNodes++; if (game.isTerminal(state)) return game.getUtility(state, player); double value = Double.NEGATIVE_INFINITY; for (ACTION action : game.getActions(state)) { value = Math.max(value, minValue( // game.getResult(state, action), player, alpha, beta)); if (value >= beta) return value; alpha = Math.max(alpha, value); } return value; } public double minValue(STATE state, PLAYER player, double alpha, double beta) { expandedNodes++; if (game.isTerminal(state)) return game.getUtility(state, player); double value = Double.POSITIVE_INFINITY; for (ACTION action : game.getActions(state)) { value = Math.min(value, maxValue( // game.getResult(state, action), player, alpha, beta)); if (value <= alpha) return value; beta = Math.min(beta, value); } return value; } @Override public Metrics getMetrics() { Metrics result = new Metrics(); result.set("expandedNodes", expandedNodes); return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy