
aima.core.search.local.HillClimbingSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aima-core Show documentation
Show all versions of aima-core Show documentation
AIMA-Java Core Algorithms from the book Artificial Intelligence a Modern Approach 3rd Ed.
package aima.core.search.local;
import java.util.List;
import aima.core.agent.Action;
import aima.core.search.framework.Metrics;
import aima.core.search.framework.Node;
import aima.core.search.framework.NodeExpander;
import aima.core.search.framework.SearchForActions;
import aima.core.search.framework.SearchForStates;
import aima.core.search.framework.SearchUtils;
import aima.core.search.framework.evalfunc.HeuristicFunction;
import aima.core.search.framework.problem.Problem;
import aima.core.util.CancelableThread;
/**
* Artificial Intelligence A Modern Approach (3rd Edition): Figure 4.2, page
* 122.
*
*
*
* function HILL-CLIMBING(problem) returns a state that is a local maximum
*
* current <- MAKE-NODE(problem.INITIAL-STATE)
* loop do
* neighbor <- a highest-valued successor of current
* if neighbor.VALUE <= current.VALUE then return current.STATE
* current <- neighbor
*
*
* Figure 4.2 The hill-climbing search algorithm, which is the most basic local
* search technique. At each step the current node is replaced by the best
* neighbor; in this version, that means the neighbor with the highest VALUE,
* but if a heuristic cost estimate h is used, we would find the neighbor with
* the lowest h.
*
* @author Ravi Mohan
* @author Mike Stampone
* @author Ruediger Lunde
*/
public class HillClimbingSearch implements SearchForActions, SearchForStates {
public enum SearchOutcome {
FAILURE, SOLUTION_FOUND
};
public static final String METRIC_NODES_EXPANDED = "nodesExpanded";
public static final String METRIC_NODE_VALUE = "nodeValue";
private HeuristicFunction hf = null;
private final NodeExpander nodeExpander;
private SearchOutcome outcome = SearchOutcome.FAILURE;
private Object lastState = null;
private Metrics metrics = new Metrics();
/**
* Constructs a hill-climbing search from the specified heuristic function.
*
* @param hf
* a heuristic function
*/
public HillClimbingSearch(HeuristicFunction hf) {
this(hf, new NodeExpander());
}
public HillClimbingSearch(HeuristicFunction hf, NodeExpander nodeExpander) {
this.hf = hf;
this.nodeExpander = nodeExpander;
}
@Override
public List findActions(Problem p) {
nodeExpander.useParentLinks(true);
Node node = searchNode(p);
return node == null ? SearchUtils.failure() : SearchUtils.getSequenceOfActions(node);
}
@Override
public Object findState(Problem p) {
nodeExpander.useParentLinks(false);
Node node = searchNode(p);
return node == null ? null : node.getState();
}
/**
* Returns a list of actions to the local maximum if the local maximum was
* found, a list containing a single NoOp Action if already at the local
* maximum, or an empty list if the search was canceled by the user.
*
* @param p
* the search problem
*
* @return a list of actions to the local maximum if the local maximum was
* found, a list containing a single NoOp Action if already at the
* local maximum, or an empty list if the search was canceled by the
* user.
*/
// function HILL-CLIMBING(problem) returns a state that is a local maximum
public Node searchNode(Problem p) {
clearInstrumentation();
outcome = SearchOutcome.FAILURE;
// current <- MAKE-NODE(problem.INITIAL-STATE)
Node current = nodeExpander.createRootNode(p.getInitialState());
Node neighbor = null;
// loop do
while (!CancelableThread.currIsCanceled()) {
lastState = current.getState();
metrics.set(METRIC_NODE_VALUE, getValue(current));
List children = nodeExpander.expand(current, p);
// neighbor <- a highest-valued successor of current
neighbor = getHighestValuedNodeFrom(children, p);
// if neighbor.VALUE <= current.VALUE then return current.STATE
if ((neighbor == null) || (getValue(neighbor) <= getValue(current))) {
if (SearchUtils.isGoalState(p, current))
outcome = SearchOutcome.SOLUTION_FOUND;
return current;
}
// current <- neighbor
current = neighbor;
}
return null;
}
/**
* Returns SOLUTION_FOUND if the local maximum is a goal state, or FAILURE
* if the local maximum is not a goal state.
*
* @return SOLUTION_FOUND if the local maximum is a goal state, or FAILURE
* if the local maximum is not a goal state.
*/
public SearchOutcome getOutcome() {
return outcome;
}
/**
* Returns the last state from which the hill climbing search found the
* local maximum.
*
* @return the last state from which the hill climbing search found the
* local maximum.
*/
public Object getLastSearchState() {
return lastState;
}
@Override
public NodeExpander getNodeExpander() {
return nodeExpander;
}
/**
* Returns all the search metrics.
*/
public Metrics getMetrics() {
metrics.set(METRIC_NODES_EXPANDED, nodeExpander.getNumOfExpandCalls());
return metrics;
}
/**
* Sets all metrics to zero.
*/
private void clearInstrumentation() {
nodeExpander.resetCounter();
metrics.set(METRIC_NODES_EXPANDED, 0);
metrics.set(METRIC_NODE_VALUE, 0);
}
//
// PRIVATE METHODS
//
private Node getHighestValuedNodeFrom(List children, Problem p) {
double highestValue = Double.NEGATIVE_INFINITY;
Node nodeWithHighestValue = null;
for (int i = 0; i < children.size(); i++) {
Node child = (Node) children.get(i);
double value = getValue(child);
if (value > highestValue) {
highestValue = value;
nodeWithHighestValue = child;
}
}
return nodeWithHighestValue;
}
private double getValue(Node n) {
// assumption greater heuristic value =>
// HIGHER on hill; 0 == goal state;
return -1 * hf.h(n.getState());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy