All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.googlecode.blaisemath.graph.metrics.BetweenCentrality Maven / Gradle / Ivy

There is a newer version: 4.0.8
Show newest version
package com.googlecode.blaisemath.graph.metrics;

/*
 * #%L
 * BlaiseGraphTheory
 * --
 * Copyright (C) 2009 - 2019 Elisha Peterson
 * --
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * #L%
 */

import com.google.common.collect.HashMultimap;
import com.google.common.collect.HashMultiset;
import com.google.common.collect.Multimap;
import com.google.common.collect.Multiset;
import com.google.common.collect.Queues;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import com.google.common.graph.Graph;
import com.googlecode.blaisemath.util.Instrument;
import com.googlecode.blaisemath.graph.GraphUtils;
import java.util.Deque;

/**
 * Provides a metric describing the betweenness centrality of a node in a
 * CONNECTED graph. Returns infinity if the graph is not connected. May take a
 * long time for large graphs. Computationally, the centrality measures
 * the probability that a given node lies on a randomly chosen geodesic.
 *
 * @author Elisha Peterson
 */
public class BetweenCentrality extends AbstractGraphNodeMetric {
    
    public BetweenCentrality() {
        super("Betweenness centrality");
    }

    @Override
    public  Double apply(Graph graph, N node) {
        return apply(graph).get(node);
    }

    @Override
    public  Map apply(Graph graph) {
        int id = Instrument.start("BetweenCentrality.allValues", graph.nodes().size()+" nodes", graph.edges().size()+" edges");
        Map between = new HashMap<>();
        graph.nodes().forEach(n -> between.put(n, 0.0));
        graph.nodes().forEach(n -> applyBrandes(graph, n, between, graph.isDirected() ? 1.0 : 0.5));
        Instrument.end(id);
        return between;
    }

    /**
     * Breadth-first search algorithm for an unweighted graph to generate betweenness scores, with specified starting
     * node. From Brandes, "A Faster Algorithm for Betweenness Centrality".
     *
     * @param graph the graph
     * @param start the start node
     * @param result data structure storing existing betweenness centrality values
     * @param multiplier applied to all elements of resulting map
     */
    private static  void applyBrandes(Graph graph, N start, Map result, double multiplier) {
        Set nodes = graph.nodes();
        if (!nodes.contains(start)) {
            return;
        }

        // number of shortest paths to each node
        Multiset numShortest = HashMultiset.create();
        // length of shortest paths to each node
        Map lengths = new HashMap<>();
        // tracks elements in non-increasing order for later use
        Deque deque = Queues.newArrayDeque();
        // tracks node predecessors in resulting tree
        Multimap predecessors = HashMultimap.create();

        GraphUtils.breadthFirstSearch(graph, start, numShortest, lengths, deque, predecessors);

        // compute betweenness
        Map dependencies = new HashMap<>();
        for (N n : nodes) {
            dependencies.put(n, 0.0);
        }
        while (!deque.isEmpty()) {
            N w = deque.pollLast();
            for (N n : predecessors.get(w)) {
                dependencies.put(n, dependencies.get(n) + (double) numShortest.count(n) / numShortest.count(w) * (1 + dependencies.get(w)));
            }
            if (w != start) {
                result.put(w, result.get(w) + multiplier * dependencies.get(w));
            }
        }

    }
    
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy