com.googlecode.blaisemath.graph.metrics.ClosenessCentrality Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of blaise-graph-theory Show documentation
Show all versions of blaise-graph-theory Show documentation
Graph definitions and algorithms.
package com.googlecode.blaisemath.graph.metrics;
/*
* #%L
* BlaiseGraphTheory
* --
* Copyright (C) 2009 - 2019 Elisha Peterson
* --
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
import com.google.common.collect.HashMultimap;
import com.google.common.collect.HashMultiset;
import com.google.common.collect.Maps;
import com.google.common.graph.Graph;
import com.googlecode.blaisemath.graph.GraphMetrics;
import com.googlecode.blaisemath.graph.GraphUtils;
import com.googlecode.blaisemath.util.Instrument;
import java.util.ArrayDeque;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
/**
* Implements closeness centrality (Sabidussi 1966), the inverse sum of
* distances from one node to other nodes. The same calculation can be used to
* compute the "eccentricity" of the node, the max distance from this node to
* any other node, termed graph centrality by Hage/Harary 1995. Instances
* of both metrics are provided.
*
* @author Elisha Peterson
*/
public class ClosenessCentrality extends AbstractGraphNodeMetric {
public ClosenessCentrality() {
super("Closeness centrality");
}
@Override
public Double apply(Graph graph, N node) {
int n = graph.nodes().size();
Map lengths = new HashMap<>();
GraphUtils.breadthFirstSearch(graph, node, HashMultiset.create(), lengths, new ArrayDeque<>(), HashMultimap.create());
double cptSize = lengths.size();
double sum = lengths.values().stream().mapToDouble(v -> v).sum();
return cptSize / n * (n - 1.0) / sum;
}
@Override
public Map apply(Graph graph) {
int id = Instrument.start("ClosenessCentrality.allValues", graph.nodes().size()+" nodes", graph.edges().size()+" edges");
Map res = GraphMetrics.applyToComponents(graph, new ApplyConnected());
Instrument.end(id);
return res;
}
/** Delegate metric that computes values for a connected portion of a graph */
private static class ApplyConnected extends AbstractGraphNodeMetric {
ApplyConnected() {
super("");
}
@Override
public Double apply(Graph graph, N node) {
// not used
return null;
}
@Override
public Map apply(Graph graph) {
Map res = Maps.newHashMap();
Set nodes = graph.nodes();
int n = nodes.size();
double max = n - 1.0;
for (N start : nodes) {
Map lengths = new HashMap<>();
GraphUtils.breadthFirstSearch(graph, start, HashMultiset.create(), lengths, new ArrayDeque<>(), HashMultimap.create());
double sum = lengths.values().stream().mapToDouble(v -> v).sum();
res.put(start, max / sum);
}
return res;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy