com.googlecode.blaisemath.graph.metrics.EigenCentrality Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of blaise-graph-theory Show documentation
Show all versions of blaise-graph-theory Show documentation
Graph definitions and algorithms.
package com.googlecode.blaisemath.graph.metrics;
/*
* #%L
* BlaiseGraphTheory
* --
* Copyright (C) 2009 - 2019 Elisha Peterson
* --
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;
import com.google.common.graph.Graph;
import com.googlecode.blaisemath.util.Instrument;
import com.googlecode.blaisemath.graph.GraphUtils;
import com.googlecode.blaisemath.graph.util.Matrices;
/**
* Implementation of the eigenvalue centrality calculation. Uses an approximation method to compute the largest eigenvector
* for the adjacency matrix.
*
* @author Elisha Peterson
*/
public class EigenCentrality extends AbstractGraphNodeMetric {
private static final Logger LOG = Logger.getLogger(EigenCentrality.class.getName());
public EigenCentrality() {
super("Eigenvalue centrality (estimated)");
}
@Override
public Double apply(Graph graph, N node) {
return apply(graph).get(node);
}
@Override
public Map apply(Graph graph) {
int id = Instrument.start("EigenCentrality.allValues", graph.nodes().size() + " nodes", graph.edges().size() + " edges");
// computes eigenvalue centrality via repeated powers of the adjacency matrix
// (this finds the largest-magnitude eigenvector)
List nodes = new ArrayList<>();
boolean[][] adj0 = GraphUtils.adjacencyMatrix(graph, nodes);
int n = nodes.size();
double[][] mx = new double[n][n];
for (int i = 0; i < mx.length; i++) {
for (int j = 0; j < mx.length; j++) {
mx[i][j] = adj0[i][j] ? 1 : 0;
mx[i][j] = mx[i][j];
}
}
double[][] powerMatrix = Matrices.matrixProduct(mx, mx);
for (int i = 0; i < 10; i++) {
powerMatrix = Matrices.matrixProduct(powerMatrix, powerMatrix);
normalize(powerMatrix);
}
// compute 256 and 257th power vectors
double[] vec0 = new double[n];
Arrays.fill(vec0, 1.0 / n);
double[] powerVector1 = Matrices.matrixProduct(powerMatrix, vec0);
double[] powerVector2 = Matrices.matrixProduct(mx, powerVector1);
// estimate eigenvalue for testing purposes
double[] div = new double[n];
for (int i = 0; i < n; i++) {
div[i] = powerVector2[i] / powerVector1[i];
}
Instrument.middle(id, "EigenCentrality.allValues", "eigenvalues="+Arrays.toString(div));
Matrices.normalize(powerVector2);
for (int i = 0; i < n - 1; i++) {
if (!(powerVector2[i] * powerVector2[i] > 0)) {
// should not happen
LOG.log(Level.SEVERE, "WARNING -- eigenvector has inconsistent signs");
break;
}
}
double sign = Math.signum(powerVector2[0]);
Map result = new HashMap<>(n);
for (int i = 0; i < n; i++) {
result.put(nodes.get(i), sign * powerVector2[i]);
}
Instrument.end(id);
return result;
}
/** Normalize a matrix by dividing by max value */
private static void normalize(double[][] mx) {
double max = -Double.MAX_VALUE;
for (double[] mx1 : mx) {
for (int j = 0; j < mx.length; j++) {
max = Math.max(max, mx1[j]);
}
}
for (double[] mx1 : mx) {
for (int j = 0; j < mx.length; j++) {
mx1[j] /= max;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy