com.googlecode.blaisemath.graph.modules.metrics.BetweenCentrality Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of blaise-graphtheory Show documentation
Show all versions of blaise-graphtheory Show documentation
Link graph definitions, algorithms, and visualization.
The newest version!
/*
* BetweenCentrality.java
* Created Jul 3, 2010
*/
package com.googlecode.blaisemath.graph.modules.metrics;
/*
* #%L
* BlaiseGraphTheory
* --
* Copyright (C) 2009 - 2016 Elisha Peterson
* --
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
import com.googlecode.blaisemath.graph.GraphNodeMetric;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.Stack;
import com.googlecode.blaisemath.graph.GAInstrument;
import com.googlecode.blaisemath.graph.Graph;
import com.googlecode.blaisemath.graph.GraphUtils;
/**
* Provides a metric describing the betweenness centrality of a vertex in a
* CONNECTED graph. Returns infinity if the graph is not connected. May take a
* long time for large graphs.
Computationally, the centrality measures
* the probability that a given node lies on a randomly chosen geodesic.
*
* @author Elisha Peterson
*/
public class BetweenCentrality implements GraphNodeMetric {
public Double apply(Graph graph, V node) {
return allValues(graph).get(node);
}
public Map allValues(Graph graph) {
int id = GAInstrument.start("BetweenCentrality.allValues", graph.nodeCount()+" nodes", graph.edgeCount()+" edges");
HashMap between = new HashMap();
for (V v : graph.nodes()) {
between.put(v, 0.0);
}
for (V start : graph.nodes()) {
brandes(graph, start, between, graph.isDirected() ? 1.0 : 0.5);
}
GAInstrument.end(id);
return between;
}
/**
* Breadth-first search algorithm for an unweighted graph to generate
* betweenness scores, with specified starting vertex. From Brandes,
* "A Faster Algorithm for Betweenness Centrality"
*
* @param graph the graph
* @param start the start vertex
* @param between data structure storing existing betweenness centrality values
* @param multiplier applied to all elements of resulting map
* @return data structure encoding the result
*/
static HashMap brandes(Graph graph, V start, HashMap between, double multiplier) {
Set nodes = graph.nodes();
if (!nodes.contains(start)) {
return new HashMap();
}
// number of shortest paths to each vertex
HashMap numShortest = new HashMap();
// length of shortest paths to each vertex
HashMap lengths = new HashMap();
// tracks elements in non-increasing order for later use
Stack stack = new Stack();
// tracks vertex predecessors in resulting tree
HashMap> pred = new HashMap>();
GraphUtils.breadthFirstSearch(graph, start, numShortest, lengths, stack, pred);
// compute betweenness
HashMap dependencies = new HashMap();
for (V v : nodes) {
dependencies.put(v, 0.0);
}
while (!stack.isEmpty()) {
V w = stack.pop();
for (V v : pred.get(w)) {
dependencies.put(v, dependencies.get(v)
+ (double) numShortest.get(v) / numShortest.get(w) * (1 + dependencies.get(w)));
}
if (w != start) {
between.put(w, between.get(w)+multiplier*dependencies.get(w));
}
}
return between;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy