tri.ai.cli.OpenAiMemoryChat.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of promptkt Show documentation
Show all versions of promptkt Show documentation
LLM and prompt engineering.
The newest version!
/*-
* #%L
* tri.promptfx:promptkt
* %%
* Copyright (C) 2023 - 2024 Johns Hopkins University Applied Physics Laboratory
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package tri.ai.cli
import com.aallam.openai.api.logging.LogLevel
import kotlinx.coroutines.runBlocking
import tri.ai.core.TextChatMessage
import tri.ai.core.TextChatRole
import tri.ai.memory.*
import tri.ai.openai.*
import tri.ai.openai.OpenAiModelIndex.GPT35_TURBO
import kotlin.system.exitProcess
/** Example of a chat that has a memory of previous conversations. */
class OpenAiMemoryChat {
val greeting = "You are chatting with GPT-3.5 Turbo (with memory). Say 'bye' to exit."
val model = GPT35_TURBO
val chatService = OpenAiChat(modelId = model)
val persona: BotPersona = HelperPersona("Jack")
val memory: MemoryService = BotMemory(persona, OpenAiChat(), OpenAiEmbeddingService())
/**
* Completes a chat from the user.
* The primary task is to send the chat history to the chat API and print the result.
* The secondary task is to process and store a "memory" of the conversation.
*/
suspend fun doChat(userInput: String): TextChatMessage {
val userItem = MemoryItem(TextChatRole.User, userInput)
memory.addChat(userItem)
val contextualHistory = memory.buildContextualConversationHistory(userItem).map { it.toChatMessage() }
val personaMessage = listOf(TextChatMessage(TextChatRole.System, persona.getSystemMessage()))
val response = chatService.chat(personaMessage + contextualHistory).firstValue!!
memory.addChat(MemoryItem(response))
memory.saveMemory(interimSave = true)
return response
}
//region INPUT/OUTPUT
/** Prints the chat message to the console. */
fun showChat(message: TextChatMessage) {
println(message.content)
}
/** Reads a line of input from the console. */
fun readUserInput(): String {
print("> ")
return readln()
}
//endregion
companion object {
@JvmStatic
fun main(args: Array) {
OpenAiClient.INSTANCE.settings.logLevel = LogLevel.None
val chatbot = OpenAiMemoryChat()
runBlocking {
println(chatbot.greeting)
chatbot.memory.initMemory()
var input = chatbot.readUserInput()
while (input != "bye") {
val chat = chatbot.doChat(input)
chatbot.showChat(chat)
input = chatbot.readUserInput()
}
chatbot.memory.saveMemory(interimSave = false)
}
println("Goodbye!")
exitProcess(0)
}
}
}