tri.ai.embedding.EmbeddingMatch.kt Maven / Gradle / Ivy
/*-
* #%L
* tri.promptfx:promptkt
* %%
* Copyright (C) 2023 - 2024 Johns Hopkins University Applied Physics Laboratory
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package tri.ai.embedding
import com.fasterxml.jackson.annotation.JsonIgnore
import tri.ai.text.chunks.TextChunk
import tri.ai.text.chunks.TextChunkInDoc
import tri.ai.text.chunks.TextDoc
/** A scored match for a semantic query. */
class EmbeddingMatch(
@get:JsonIgnore
val query: SemanticTextQuery,
@get:JsonIgnore
val document: TextDoc,
@get:JsonIgnore
val chunk: TextChunk,
val embeddingModel: String,
val chunkEmbedding: List,
val queryScore: Float
) {
val source: Map
get() = mapOf(
"metadata" to document.metadata,
"first" to (chunk as? TextChunkInDoc)?.first,
"last" to (chunk as? TextChunkInDoc)?.last
)
val chunkText: String
get() = chunk.text(document.all)
@get:JsonIgnore
val chunkSize: Int
get() = chunkText.length
@get:JsonIgnore
val shortDocName: String
get() = document.browsable()?.shortNameWithoutExtension ?: document.metadata.id
var responseScore: Float? = null
override fun toString() = "EmbeddingMatch(document=$shortDocName, " +
"chunk size=${chunk.text(document.all).length}, " +
"score=${"%.3f".format(queryScore)})"
}