tri.ai.embedding.Embeddings.kt Maven / Gradle / Ivy
/*-
* #%L
* tri.promptfx:promptkt
* %%
* Copyright (C) 2023 - 2024 Johns Hopkins University Applied Physics Laboratory
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package tri.ai.embedding
import kotlin.math.pow
/** Compute cosine similarity of two vectors. */
fun cosineSimilarity(resp1: List, resp2: List): Double {
val dotProduct = resp1.zip(resp2).sumOf { it.first * it.second }
val magnitude1 = resp1.sumOf { it * it }.pow(0.5)
val magnitude2 = resp2.sumOf { it * it }.pow(0.5)
return dotProduct / (magnitude1 * magnitude2)
}
/** Compute dot product of two vectors. */
fun List.dot(resp2: List) =
zip(resp2).sumOf { it.first * it.second.toDouble() }