tri.ai.openai.OpenAiEmbeddingService.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of promptkt Show documentation
Show all versions of promptkt Show documentation
LLM and prompt engineering.
The newest version!
/*-
* #%L
* tri.promptfx:promptkt
* %%
* Copyright (C) 2023 - 2024 Johns Hopkins University Applied Physics Laboratory
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package tri.ai.openai
import tri.ai.embedding.EmbeddingService
import tri.ai.openai.OpenAiModelIndex.EMBEDDING_ADA
import tri.ai.text.chunks.TextChunkRaw
import tri.ai.text.chunks.process.SmartTextChunker
/** An embedding service that uses the OpenAI API. */
class OpenAiEmbeddingService(override val modelId: String = EMBEDDING_ADA, val client: OpenAiClient = OpenAiClient.INSTANCE) : EmbeddingService {
override fun toString() = modelId
private val embeddingCache = mutableMapOf, List>()
override suspend fun calculateEmbedding(text: List, outputDimensionality: Int?): List> {
val uncached = text.filter { (it to outputDimensionality) !in embeddingCache }
val uncachedCalc = uncached.chunked(MAX_EMBEDDING_BATCH_SIZE).flatMap {
client.quickEmbedding(modelId, outputDimensionality, it).firstValue
}
uncachedCalc.forEachIndexed { index, embedding -> embeddingCache[uncached[index] to outputDimensionality] = embedding }
return text.map { embeddingCache[it to outputDimensionality]!! }
}
override fun chunkTextBySections(text: String, maxChunkSize: Int) =
with (SmartTextChunker(maxChunkSize)) {
TextChunkRaw(text).chunkBySections(combineShortSections = true)
}
companion object {
private const val MAX_EMBEDDING_BATCH_SIZE = 100
}
}