tri.ai.openai.OpenAiEmbeddingService.kt Maven / Gradle / Ivy
/*-
* #%L
* tri.promptfx:promptkt
* %%
* Copyright (C) 2023 - 2024 Johns Hopkins University Applied Physics Laboratory
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* #L%
*/
package tri.ai.openai
import tri.ai.embedding.EmbeddingService
import tri.ai.openai.OpenAiModelIndex.EMBEDDING_ADA
import tri.ai.text.chunks.TextChunkRaw
import tri.ai.text.chunks.process.SmartTextChunker
/** An embedding service that uses the OpenAI API. */
class OpenAiEmbeddingService(override val modelId: String = EMBEDDING_ADA, val client: OpenAiClient = OpenAiClient.INSTANCE) : EmbeddingService {
override fun toString() = modelId
private val embeddingCache = mutableMapOf, List>()
override suspend fun calculateEmbedding(text: List, outputDimensionality: Int?): List> {
val uncached = text.filter { (it to outputDimensionality) !in embeddingCache }
val uncachedCalc = uncached.chunked(MAX_EMBEDDING_BATCH_SIZE).flatMap {
client.quickEmbedding(modelId, outputDimensionality, it).firstValue
}
uncachedCalc.forEachIndexed { index, embedding -> embeddingCache[uncached[index] to outputDimensionality] = embedding }
return text.map { embeddingCache[it to outputDimensionality]!! }
}
override fun chunkTextBySections(text: String, maxChunkSize: Int) =
with (SmartTextChunker(maxChunkSize)) {
TextChunkRaw(text).chunkBySections(combineShortSections = true)
}
companion object {
private const val MAX_EMBEDDING_BATCH_SIZE = 100
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy