All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.googlecode.concurrenttrees.radix.node.concrete.chararray.CharArrayNodeDefault Maven / Gradle / Ivy

There is a newer version: 2.6.1
Show newest version
/**
 * Copyright 2012-2013 Niall Gallagher
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.googlecode.concurrenttrees.radix.node.concrete.chararray;

import com.googlecode.concurrenttrees.radix.node.Node;
import com.googlecode.concurrenttrees.radix.node.util.NodeCharacterComparator;
import com.googlecode.concurrenttrees.radix.node.util.NodeUtil;
import com.googlecode.concurrenttrees.radix.node.util.AtomicReferenceArrayListAdapter;
import com.googlecode.concurrenttrees.common.CharSequences;

import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicReferenceArray;

/**
 * A non-optimized implementation of the {@link Node} interface. Stores all variables and supports all behaviours
 * required by the tree, but not very memory efficient.
 * 

* See {@link com.googlecode.concurrenttrees.radix.node.NodeFactory} for documentation on how alternative * node implementations can be created to reduce memory overhead. See the {@link Node} interface for details on how * to write memory-efficient nodes. *

* This implementation stores references to child nodes in an {@link AtomicReferenceArray}, in ascending sorted order * of the first character of the edges which child nodes define. *

* The {@link #getOutgoingEdge(Character)} method uses binary search to locate a requested node, given the first character * of an edge indicated. The node is then read and returned atomically from the {@link AtomicReferenceArray}. *

* The {@link #updateOutgoingEdge(com.googlecode.concurrenttrees.radix.node.Node)} method ensures that any * attempt to update a reference to a child node preserves the constraints defined in the {@link Node} interface. New * child nodes are written atomically to the {@link AtomicReferenceArray}. *

* The constraints defined in the {@link Node} interface ensure that the {@link AtomicReferenceArray} always remains in * ascending sorted order regardless of modifications performed concurrently, as long as the modifications comply with * the constraints. This node enforces those constraints. * * @author Niall Gallagher */ public class CharArrayNodeDefault implements Node { // Characters in the edge arriving at this node from a parent node. // Once assigned, we never modify this... private final char[] incomingEdgeCharArray; // References to child nodes representing outgoing edges from this node. // Once assigned we never add or remove references, but we do update existing references to point to new child // nodes provided new edges start with the same first character... private final AtomicReferenceArray outgoingEdges; // An arbitrary value which the application associates with a key matching the path to this node in the tree. // This value can be null... private final Object value; public CharArrayNodeDefault(CharSequence edgeCharSequence, Object value, List outgoingEdges) { Node[] childNodeArray = outgoingEdges.toArray(new Node[outgoingEdges.size()]); // Sort the child nodes... Arrays.sort(childNodeArray, new NodeCharacterComparator()); this.outgoingEdges = new AtomicReferenceArray(childNodeArray); this.incomingEdgeCharArray = CharSequences.toCharArray(edgeCharSequence); this.value = value; } @Override public CharSequence getIncomingEdge() { return CharSequences.fromCharArray(incomingEdgeCharArray); } @Override public Character getIncomingEdgeFirstCharacter() { return incomingEdgeCharArray[0]; } @Override public Object getValue() { return value; } @Override public Node getOutgoingEdge(Character edgeFirstCharacter) { // Binary search for the index of the node whose edge starts with the given character. // Note that this binary search is safe in the face of concurrent modification due to constraints // we enforce on use of the array, as documented in the binarySearchForEdge method... int index = NodeUtil.binarySearchForEdge(outgoingEdges, edgeFirstCharacter); if (index < 0) { // No such edge exists... return null; } // Atomically return the child node at this index... return outgoingEdges.get(index); } @Override public void updateOutgoingEdge(Node childNode) { // Binary search for the index of the node whose edge starts with the given character. // Note that this binary search is safe in the face of concurrent modification due to constraints // we enforce on use of the array, as documented in the binarySearchForEdge method... int index = NodeUtil.binarySearchForEdge(outgoingEdges, childNode.getIncomingEdgeFirstCharacter()); if (index < 0) { throw new IllegalStateException("Cannot update the reference to the following child node for the edge starting with '" + childNode.getIncomingEdgeFirstCharacter() +"', no such edge already exists: " + childNode); } // Atomically update the child node at this index... outgoingEdges.set(index, childNode); } @Override public List getOutgoingEdges() { return new AtomicReferenceArrayListAdapter(outgoingEdges); } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("Node{"); sb.append("edge=").append(incomingEdgeCharArray); sb.append(", value=").append(value); sb.append(", edges=").append(getOutgoingEdges()); sb.append("}"); return sb.toString(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy