com.googlecode.concurrenttrees.radix.node.concrete.chararray.CharArrayNodeDefault Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of concurrent-trees Show documentation
Show all versions of concurrent-trees Show documentation
Concurrent Radix Trees and Concurrent Suffix Trees for Java.
/**
* Copyright 2012-2013 Niall Gallagher
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.googlecode.concurrenttrees.radix.node.concrete.chararray;
import com.googlecode.concurrenttrees.radix.node.Node;
import com.googlecode.concurrenttrees.radix.node.util.NodeCharacterComparator;
import com.googlecode.concurrenttrees.radix.node.util.NodeUtil;
import com.googlecode.concurrenttrees.radix.node.util.AtomicReferenceArrayListAdapter;
import com.googlecode.concurrenttrees.common.CharSequences;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicReferenceArray;
/**
* A non-optimized implementation of the {@link Node} interface. Stores all variables and supports all behaviours
* required by the tree, but not very memory efficient.
*
* See {@link com.googlecode.concurrenttrees.radix.node.NodeFactory} for documentation on how alternative
* node implementations can be created to reduce memory overhead. See the {@link Node} interface for details on how
* to write memory-efficient nodes.
*
* This implementation stores references to child nodes in an {@link AtomicReferenceArray}, in ascending sorted order
* of the first character of the edges which child nodes define.
*
* The {@link #getOutgoingEdge(Character)} method uses binary search to locate a requested node, given the first character
* of an edge indicated. The node is then read and returned atomically from the {@link AtomicReferenceArray}.
*
* The {@link #updateOutgoingEdge(com.googlecode.concurrenttrees.radix.node.Node)} method ensures that any
* attempt to update a reference to a child node preserves the constraints defined in the {@link Node} interface. New
* child nodes are written atomically to the {@link AtomicReferenceArray}.
*
* The constraints defined in the {@link Node} interface ensure that the {@link AtomicReferenceArray} always remains in
* ascending sorted order regardless of modifications performed concurrently, as long as the modifications comply with
* the constraints. This node enforces those constraints.
*
* @author Niall Gallagher
*/
public class CharArrayNodeDefault implements Node {
// Characters in the edge arriving at this node from a parent node.
// Once assigned, we never modify this...
private final char[] incomingEdgeCharArray;
// References to child nodes representing outgoing edges from this node.
// Once assigned we never add or remove references, but we do update existing references to point to new child
// nodes provided new edges start with the same first character...
private final AtomicReferenceArray outgoingEdges;
// An arbitrary value which the application associates with a key matching the path to this node in the tree.
// This value can be null...
private final Object value;
public CharArrayNodeDefault(CharSequence edgeCharSequence, Object value, List outgoingEdges) {
Node[] childNodeArray = outgoingEdges.toArray(new Node[outgoingEdges.size()]);
// Sort the child nodes...
Arrays.sort(childNodeArray, new NodeCharacterComparator());
this.outgoingEdges = new AtomicReferenceArray(childNodeArray);
this.incomingEdgeCharArray = CharSequences.toCharArray(edgeCharSequence);
this.value = value;
}
@Override
public CharSequence getIncomingEdge() {
return CharSequences.fromCharArray(incomingEdgeCharArray);
}
@Override
public Character getIncomingEdgeFirstCharacter() {
return incomingEdgeCharArray[0];
}
@Override
public Object getValue() {
return value;
}
@Override
public Node getOutgoingEdge(Character edgeFirstCharacter) {
// Binary search for the index of the node whose edge starts with the given character.
// Note that this binary search is safe in the face of concurrent modification due to constraints
// we enforce on use of the array, as documented in the binarySearchForEdge method...
int index = NodeUtil.binarySearchForEdge(outgoingEdges, edgeFirstCharacter);
if (index < 0) {
// No such edge exists...
return null;
}
// Atomically return the child node at this index...
return outgoingEdges.get(index);
}
@Override
public void updateOutgoingEdge(Node childNode) {
// Binary search for the index of the node whose edge starts with the given character.
// Note that this binary search is safe in the face of concurrent modification due to constraints
// we enforce on use of the array, as documented in the binarySearchForEdge method...
int index = NodeUtil.binarySearchForEdge(outgoingEdges, childNode.getIncomingEdgeFirstCharacter());
if (index < 0) {
throw new IllegalStateException("Cannot update the reference to the following child node for the edge starting with '" + childNode.getIncomingEdgeFirstCharacter() +"', no such edge already exists: " + childNode);
}
// Atomically update the child node at this index...
outgoingEdges.set(index, childNode);
}
@Override
public List getOutgoingEdges() {
return new AtomicReferenceArrayListAdapter(outgoingEdges);
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("Node{");
sb.append("edge=").append(incomingEdgeCharArray);
sb.append(", value=").append(value);
sb.append(", edges=").append(getOutgoingEdges());
sb.append("}");
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy