All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.fixed.FixedOps3 Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

The newest version!
/*
 * Copyright (c) 2009-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.ejml.alg.fixed;

import org.ejml.data.FixedMatrix3_64F;
import org.ejml.data.FixedMatrix3x3_64F;

/**
 * 

Common matrix operations for fixed sized matrices which are 3 x 3 or 3 element vectors.

*

DO NOT MODIFY. Automatically generated code created by GenerateFixedOps

* * @author Peter Abeles */ public class FixedOps3 { /** *

Performs the following operation:
*
* c = a + b
* cij = aij + bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param c A Matrix where the results are stored. Modified. */ public static void add( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c ) { c.a11 = a.a11 + b.a11; c.a12 = a.a12 + b.a12; c.a13 = a.a13 + b.a13; c.a21 = a.a21 + b.a21; c.a22 = a.a22 + b.a22; c.a23 = a.a23 + b.a23; c.a31 = a.a31 + b.a31; c.a32 = a.a32 + b.a32; c.a33 = a.a33 + b.a33; } /** *

Performs the following operation:
*
* a = a + b
* aij = aij + bij
*

* * @param a A Matrix. Modified. * @param b A Matrix. Not modified. */ public static void addEquals( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b ) { a.a11 += b.a11; a.a12 += b.a12; a.a13 += b.a13; a.a21 += b.a21; a.a22 += b.a22; a.a23 += b.a23; a.a31 += b.a31; a.a32 += b.a32; a.a33 += b.a33; } /** * Performs an in-place transpose. This algorithm is only efficient for square * matrices. * * @param m The matrix that is to be transposed. Modified. */ public static void transpose( FixedMatrix3x3_64F m ) { double tmp; tmp = m.a12; m.a12 = m.a21; m.a21 = tmp; tmp = m.a13; m.a13 = m.a31; m.a31 = tmp; tmp = m.a23; m.a23 = m.a32; m.a32 = tmp; } /** *

* Transposes matrix 'a' and stores the results in 'b':
*
* bij = aji
* where 'b' is the transpose of 'a'. *

* * @param input The original matrix. Not modified. * @param output Where the transpose is stored. If null a new matrix is created. Modified. * @return The transposed matrix. */ public static FixedMatrix3x3_64F transpose( FixedMatrix3x3_64F input , FixedMatrix3x3_64F output ) { if( input == null ) input = new FixedMatrix3x3_64F(); output.a11 = input.a11; output.a12 = input.a21; output.a13 = input.a31; output.a21 = input.a12; output.a22 = input.a22; output.a23 = input.a32; output.a31 = input.a13; output.a32 = input.a23; output.a33 = input.a33; return output; } /** *

Performs the following operation:
*
* c = a * b
*
* cij = ∑k=1:n { aik * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void mult( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c) { c.a11 = a.a11*b.a11 + a.a12*b.a21 + a.a13*b.a31; c.a12 = a.a11*b.a12 + a.a12*b.a22 + a.a13*b.a32; c.a13 = a.a11*b.a13 + a.a12*b.a23 + a.a13*b.a33; c.a21 = a.a21*b.a11 + a.a22*b.a21 + a.a23*b.a31; c.a22 = a.a21*b.a12 + a.a22*b.a22 + a.a23*b.a32; c.a23 = a.a21*b.a13 + a.a22*b.a23 + a.a23*b.a33; c.a31 = a.a31*b.a11 + a.a32*b.a21 + a.a33*b.a31; c.a32 = a.a31*b.a12 + a.a32*b.a22 + a.a33*b.a32; c.a33 = a.a31*b.a13 + a.a32*b.a23 + a.a33*b.a33; } /** *

Performs the following operation:
*
* c = aT * b
*
* cij = ∑k=1:n { aki * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransA( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c) { c.a11 = a.a11*b.a11 + a.a21*b.a21 + a.a31*b.a31; c.a12 = a.a11*b.a12 + a.a21*b.a22 + a.a31*b.a32; c.a13 = a.a11*b.a13 + a.a21*b.a23 + a.a31*b.a33; c.a21 = a.a12*b.a11 + a.a22*b.a21 + a.a32*b.a31; c.a22 = a.a12*b.a12 + a.a22*b.a22 + a.a32*b.a32; c.a23 = a.a12*b.a13 + a.a22*b.a23 + a.a32*b.a33; c.a31 = a.a13*b.a11 + a.a23*b.a21 + a.a33*b.a31; c.a32 = a.a13*b.a12 + a.a23*b.a22 + a.a33*b.a32; c.a33 = a.a13*b.a13 + a.a23*b.a23 + a.a33*b.a33; } /** *

* Performs the following operation:
*
* c = aT * bT
* cij = ∑k=1:n { aki * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransAB( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c) { c.a11 = a.a11*b.a11 + a.a21*b.a12 + a.a31*b.a13; c.a12 = a.a11*b.a21 + a.a21*b.a22 + a.a31*b.a23; c.a13 = a.a11*b.a31 + a.a21*b.a32 + a.a31*b.a33; c.a21 = a.a12*b.a11 + a.a22*b.a12 + a.a32*b.a13; c.a22 = a.a12*b.a21 + a.a22*b.a22 + a.a32*b.a23; c.a23 = a.a12*b.a31 + a.a22*b.a32 + a.a32*b.a33; c.a31 = a.a13*b.a11 + a.a23*b.a12 + a.a33*b.a13; c.a32 = a.a13*b.a21 + a.a23*b.a22 + a.a33*b.a23; c.a33 = a.a13*b.a31 + a.a23*b.a32 + a.a33*b.a33; } /** *

* Performs the following operation:
*
* c = a * bT
* cij = ∑k=1:n { aik * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransB( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c) { c.a11 = a.a11*b.a11 + a.a12*b.a12 + a.a13*b.a13; c.a12 = a.a11*b.a21 + a.a12*b.a22 + a.a13*b.a23; c.a13 = a.a11*b.a31 + a.a12*b.a32 + a.a13*b.a33; c.a21 = a.a21*b.a11 + a.a22*b.a12 + a.a23*b.a13; c.a22 = a.a21*b.a21 + a.a22*b.a22 + a.a23*b.a23; c.a23 = a.a21*b.a31 + a.a22*b.a32 + a.a23*b.a33; c.a31 = a.a31*b.a11 + a.a32*b.a12 + a.a33*b.a13; c.a32 = a.a31*b.a21 + a.a32*b.a22 + a.a33*b.a23; c.a33 = a.a31*b.a31 + a.a32*b.a32 + a.a33*b.a33; } /** *

Performs matrix to vector multiplication:
*
* c = a * b
*
* ci = ∑k=1:n { aik * bk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right vector in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void mult( FixedMatrix3x3_64F a , FixedMatrix3_64F b , FixedMatrix3_64F c) { c.a1 = a.a11*b.a1 + a.a12*b.a2 + a.a13*b.a3; c.a2 = a.a21*b.a1 + a.a22*b.a2 + a.a23*b.a3; c.a3 = a.a31*b.a1 + a.a32*b.a2 + a.a33*b.a3; } /** *

Performs vector to matrix multiplication:
*
* c = a * b
*
* cj = ∑k=1:n { bk * akj } *

* * @param a The left vector in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void mult( FixedMatrix3_64F a , FixedMatrix3x3_64F b , FixedMatrix3_64F c) { c.a1 = a.a1*b.a11 + a.a2*b.a21 + a.a3*b.a31; c.a2 = a.a1*b.a12 + a.a2*b.a22 + a.a3*b.a32; c.a3 = a.a1*b.a13 + a.a2*b.a23 + a.a3*b.a33; } /** *

Performs the vector dot product:
*
* c = a * b
*
* c> = ∑k=1:n { bk * ak } *

* * @param a The left vector in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @return The dot product */ public static double dot( FixedMatrix3_64F a , FixedMatrix3_64F b ) { return a.a1*b.a1 + a.a2*b.a2 + a.a3*b.a3; } /** * Sets all the diagonal elements equal to one and everything else equal to zero. * If this is a square matrix then it will be an identity matrix. * * @param a A matrix. */ public static void setIdentity( FixedMatrix3x3_64F a ) { a.a11 = 1; a.a21 = 0; a.a31 = 0; a.a12 = 0; a.a22 = 1; a.a32 = 0; a.a13 = 0; a.a23 = 0; a.a33 = 1; } /** * Inverts matrix 'a' using minor matrices and stores the results in 'inv'. Scaling is applied to improve * stability against overflow and underflow. * * WARNING: Potentially less stable than using LU decomposition. * * @param a Input matrix. Not modified. * @param inv Inverted output matrix. Modified. * @return true if it was successful or false if it failed. Not always reliable. */ public static boolean invert( FixedMatrix3x3_64F a , FixedMatrix3x3_64F inv ) { double scale = 1.0/elementMaxAbs(a); double a11 = a.a11*scale; double a12 = a.a12*scale; double a13 = a.a13*scale; double a21 = a.a21*scale; double a22 = a.a22*scale; double a23 = a.a23*scale; double a31 = a.a31*scale; double a32 = a.a32*scale; double a33 = a.a33*scale; double m11 = a22*a33 - a23*a32; double m12 = -( a21*a33 - a23*a31); double m13 = a21*a32 - a22*a31; double m21 = -( a12*a33 - a13*a32); double m22 = a11*a33 - a13*a31; double m23 = -( a11*a32 - a12*a31); double m31 = a12*a23 - a13*a22; double m32 = -( a11*a23 - a13*a21); double m33 = a11*a22 - a12*a21; double det = (a11*m11 + a12*m12 + a13*m13)/scale; inv.a11 = m11/det; inv.a12 = m21/det; inv.a13 = m31/det; inv.a21 = m12/det; inv.a22 = m22/det; inv.a23 = m32/det; inv.a31 = m13/det; inv.a32 = m23/det; inv.a33 = m33/det; return !Double.isNaN(det) && !Double.isInfinite(det); } /** * Computes the determinant using minor matrices. *

* WARNING: Potentially less stable than using LU decomposition. * * @param mat Input matrix. Not modified. * @return The determinant. */ public static double det( FixedMatrix3x3_64F mat ) { double a = mat.a11*(mat.a22*mat.a33 - mat.a23*mat.a32); double b = mat.a12*(mat.a21*mat.a33 - mat.a23*mat.a31); double c = mat.a13*(mat.a21*mat.a32 - mat.a31*mat.a22); return a-b+c; } /** *

* This computes the trace of the matrix:
*
* trace = ∑i=1:n { aii } *

*

* The trace is only defined for square matrices. *

* * @param a A square matrix. Not modified. */ public static double trace( FixedMatrix3x3_64F a ) { return a.a11 + a.a21 + a.a31; } /** *

* Extracts all diagonal elements from 'input' and places them inside the 'out' vector. Elements * are in sequential order. *

* * * @param input Matrix. Not modified. * @param out Vector containing diagonal elements. Modified. */ public static void diag( FixedMatrix3x3_64F input , FixedMatrix3_64F out ) { out.a1 = input.a11; out.a2 = input.a22; out.a3 = input.a33; } /** *

* Returns the value of the element in the matrix that has the largest value.
*
* Max{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static double elementMax( FixedMatrix3x3_64F a ) { double max = a.a11; max = Math.max(max,a.a12); max = Math.max(max,a.a13); max = Math.max(max,a.a21); max = Math.max(max,a.a22); max = Math.max(max,a.a23); max = Math.max(max,a.a31); max = Math.max(max,a.a32); max = Math.max(max,a.a33); return max; } /** *

* Returns the absolute value of the element in the matrix that has the largest absolute value.
*
* Max{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max abs element value of the matrix. */ public static double elementMaxAbs( FixedMatrix3x3_64F a ) { double max = a.a11; max = Math.max(max,Math.abs(a.a12)); max = Math.max(max,Math.abs(a.a13)); max = Math.max(max,Math.abs(a.a21)); max = Math.max(max,Math.abs(a.a22)); max = Math.max(max,Math.abs(a.a23)); max = Math.max(max,Math.abs(a.a31)); max = Math.max(max,Math.abs(a.a32)); max = Math.max(max,Math.abs(a.a33)); return max; } /** *

* Returns the value of the element in the matrix that has the minimum value.
*
* Min{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The value of element in the matrix with the minimum value. */ public static double elementMin( FixedMatrix3x3_64F a ) { double min = a.a11; min = Math.min(min,a.a12); min = Math.min(min,a.a13); min = Math.min(min,a.a21); min = Math.min(min,a.a22); min = Math.min(min,a.a23); min = Math.min(min,a.a31); min = Math.min(min,a.a32); min = Math.min(min,a.a33); return min; } /** *

* Returns the absolute value of the element in the matrix that has the smallest absolute value.
*
* Min{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static double elementMinAbs( FixedMatrix3x3_64F a ) { double min = a.a11; min = Math.min(min,Math.abs(a.a12)); min = Math.min(min,Math.abs(a.a13)); min = Math.min(min,Math.abs(a.a21)); min = Math.min(min,Math.abs(a.a22)); min = Math.min(min,Math.abs(a.a23)); min = Math.min(min,Math.abs(a.a31)); min = Math.min(min,Math.abs(a.a32)); min = Math.min(min,Math.abs(a.a33)); return min; } /** *

Performs the an element by element multiplication operation:
*
* aij = aij * bij
*

* @param a The left matrix in the multiplication operation. Modified. * @param b The right matrix in the multiplication operation. Not modified. */ public static void elementMult( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b) { a.a11 *= b.a11; a.a12 *= b.a12; a.a13 *= b.a13; a.a21 *= b.a21; a.a22 *= b.a22; a.a23 *= b.a23; a.a31 *= b.a31; a.a32 *= b.a32; a.a33 *= b.a33; } /** *

Performs the an element by element multiplication operation:
*
* cij = aij * bij
*

* @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void elementMult( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c ) { c.a11 = a.a11*b.a11; c.a12 = a.a12*b.a12; c.a13 = a.a13*b.a13; c.a21 = a.a21*b.a21; c.a22 = a.a22*b.a22; c.a23 = a.a23*b.a23; c.a31 = a.a31*b.a31; c.a32 = a.a32*b.a32; c.a33 = a.a33*b.a33; } /** *

Performs the an element by element division operation:
*
* aij = aij / bij
*

* @param a The left matrix in the division operation. Modified. * @param b The right matrix in the division operation. Not modified. */ public static void elementDiv( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b) { a.a11 /= b.a11; a.a12 /= b.a12; a.a13 /= b.a13; a.a21 /= b.a21; a.a22 /= b.a22; a.a23 /= b.a23; a.a31 /= b.a31; a.a32 /= b.a32; a.a33 /= b.a33; } /** *

Performs the an element by element division operation:
*
* cij = aij / bij
*

* @param a The left matrix in the division operation. Not modified. * @param b The right matrix in the division operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void elementDiv( FixedMatrix3x3_64F a , FixedMatrix3x3_64F b , FixedMatrix3x3_64F c ) { c.a11 = a.a11/b.a11; c.a12 = a.a12/b.a12; c.a13 = a.a13/b.a13; c.a21 = a.a21/b.a21; c.a22 = a.a22/b.a22; c.a23 = a.a23/b.a23; c.a31 = a.a31/b.a31; c.a32 = a.a32/b.a32; c.a33 = a.a33/b.a33; } /** *

* Performs an in-place element by element scalar multiplication.
*
* aij = α*aij *

* * @param a The matrix that is to be scaled. Modified. * @param alpha the amount each element is multiplied by. */ public static void scale( double alpha , FixedMatrix3x3_64F a ) { a.a11 *= alpha; a.a12 *= alpha; a.a13 *= alpha; a.a21 *= alpha; a.a22 *= alpha; a.a23 *= alpha; a.a31 *= alpha; a.a32 *= alpha; a.a33 *= alpha; } /** *

* Performs an element by element scalar multiplication.
*
* bij = α*aij *

* * @param alpha the amount each element is multiplied by. * @param a The matrix that is to be scaled. Not modified. * @param b Where the scaled matrix is stored. Modified. */ public static void scale( double alpha , FixedMatrix3x3_64F a , FixedMatrix3x3_64F b ) { b.a11 = a.a11*alpha; b.a12 = a.a12*alpha; b.a13 = a.a13*alpha; b.a21 = a.a21*alpha; b.a22 = a.a22*alpha; b.a23 = a.a23*alpha; b.a31 = a.a31*alpha; b.a32 = a.a32*alpha; b.a33 = a.a33*alpha; } /** *

* Performs an in-place element by element scalar division. Scalar denominator.
*
* aij = aij/α *

* * @param a The matrix whose elements are to be divided. Modified. * @param alpha the amount each element is divided by. */ public static void divide( FixedMatrix3x3_64F a , double alpha ) { a.a11 /= alpha; a.a12 /= alpha; a.a13 /= alpha; a.a21 /= alpha; a.a22 /= alpha; a.a23 /= alpha; a.a31 /= alpha; a.a32 /= alpha; a.a33 /= alpha; } /** *

* Performs an element by element scalar division. Scalar denominator.
*
* bij = *aij /α *

* * @param alpha the amount each element is divided by. * @param a The matrix whose elements are to be divided. Not modified. * @param b Where the results are stored. Modified. */ public static void divide( FixedMatrix3x3_64F a , double alpha , FixedMatrix3x3_64F b ) { b.a11 = a.a11/alpha; b.a12 = a.a12/alpha; b.a13 = a.a13/alpha; b.a21 = a.a21/alpha; b.a22 = a.a22/alpha; b.a23 = a.a23/alpha; b.a31 = a.a31/alpha; b.a32 = a.a32/alpha; b.a33 = a.a33/alpha; } /** *

* Changes the sign of every element in the matrix.
*
* aij = -aij *

* * @param a A matrix. Modified. */ public static void changeSign( FixedMatrix3x3_64F a ) { a.a11 = -a.a11; a.a12 = -a.a12; a.a13 = -a.a13; a.a21 = -a.a21; a.a22 = -a.a22; a.a23 = -a.a23; a.a31 = -a.a31; a.a32 = -a.a32; a.a33 = -a.a33; } /** *

* Sets every element in the matrix to the specified value.
*
* aij = value *

* * @param a A matrix whose elements are about to be set. Modified. * @param v The value each element will have. */ public static void fill( FixedMatrix3x3_64F a , double v ) { a.a11 = v; a.a12 = v; a.a13 = v; a.a21 = v; a.a22 = v; a.a23 = v; a.a31 = v; a.a32 = v; a.a33 = v; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy