All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.ops.CommonOps Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

The newest version!
/*
 * Copyright (c) 2009-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.ops;

import org.ejml.EjmlParameters;
import org.ejml.UtilEjml;
import org.ejml.alg.dense.decomposition.lu.LUDecompositionAlt_D64;
import org.ejml.alg.dense.linsol.LinearSolverSafe;
import org.ejml.alg.dense.linsol.lu.LinearSolverLu;
import org.ejml.alg.dense.misc.*;
import org.ejml.alg.dense.mult.MatrixMatrixMult;
import org.ejml.alg.dense.mult.MatrixMultProduct;
import org.ejml.alg.dense.mult.MatrixVectorMult;
import org.ejml.data.D1Matrix64F;
import org.ejml.data.DenseMatrix64F;
import org.ejml.data.ReshapeMatrix64F;
import org.ejml.data.RowD1Matrix64F;
import org.ejml.factory.LinearSolverFactory;
import org.ejml.interfaces.linsol.LinearSolver;
import org.ejml.interfaces.linsol.ReducedRowEchelonForm;

import java.util.Arrays;

/**
 * 

* Common matrix operations are contained here. Which specific underlying algorithm is used * is not specified just the out come of the operation. Nor should calls to these functions * reply on the underlying implementation. Which algorithm is used can depend on the matrix * being passed in. *

*

* For more exotic and specialized generic operations see {@link org.ejml.ops.SpecializedOps}. *

* @see org.ejml.alg.dense.mult.MatrixMatrixMult * @see org.ejml.alg.dense.mult.MatrixVectorMult * @see org.ejml.ops.SpecializedOps * @see org.ejml.ops.MatrixFeatures * * @author Peter Abeles */ @SuppressWarnings({"ForLoopReplaceableByForEach"}) public class CommonOps { /** *

Performs the following operation:
*
* c = a * b
*
* cij = ∑k=1:n { aik * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void mult( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numCols == 1 ) { MatrixVectorMult.mult(a,b,c); } else if( b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.mult_reorder(a,b,c); } else { MatrixMatrixMult.mult_small(a,b,c); } } /** *

Performs the following operation:
*
* c = α * a * b
*
* cij = α ∑k=1:n { * aik * bkj} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void mult( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.mult_reorder(alpha,a,b,c); } else { MatrixMatrixMult.mult_small(alpha,a,b,c); } } /** *

Performs the following operation:
*
* c = aT * b
*
* cij = ∑k=1:n { aki * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransA( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numCols == 1 ) { // todo check a.numCols == 1 and do inner product? // there are significantly faster algorithms when dealing with vectors if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixVectorMult.multTransA_reorder(a,b,c); } else { MatrixVectorMult.multTransA_small(a,b,c); } } else if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multTransA_reorder(a,b,c); } else { MatrixMatrixMult.multTransA_small(a,b,c); } } /** *

Performs the following operation:
*
* c = α * aT * b
*
* cij = α ∑k=1:n { aki * bkj} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransA( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multTransA_reorder(alpha,a,b,c); } else { MatrixMatrixMult.multTransA_small(alpha,a,b,c); } } /** *

* Performs the following operation:
*
* c = a * bT
* cij = ∑k=1:n { aik * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransB( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numRows == 1 ) { MatrixVectorMult.mult(a,b,c); } else { MatrixMatrixMult.multTransB(a,b,c); } } /** *

* Performs the following operation:
*
* c = α * a * bT
* cij = α ∑k=1:n { aik * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransB( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here MatrixMatrixMult.multTransB(alpha,a,b,c); } /** *

* Performs the following operation:
*
* c = aT * bT
* cij = ∑k=1:n { aki * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransAB( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numRows == 1) { // there are significantly faster algorithms when dealing with vectors if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixVectorMult.multTransA_reorder(a,b,c); } else { MatrixVectorMult.multTransA_small(a,b,c); } } else if( a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH ) { MatrixMatrixMult.multTransAB_aux(a,b,c,null); } else { MatrixMatrixMult.multTransAB(a,b,c); } } /** *

* Performs the following operation:
*
* c = α * aT * bT
* cij = α ∑k=1:n { aki * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multTransAB( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH ) { MatrixMatrixMult.multTransAB_aux(alpha,a,b,c,null); } else { MatrixMatrixMult.multTransAB(alpha,a,b,c); } } /** *

Computes the matrix multiplication inner product:
*
* c = aT * a
*
* cij = ∑k=1:n { aki * akj} *

* *

* Is faster than using a generic matrix multiplication by taking advantage of symmetry. For * vectors there is an even faster option, see {@link org.ejml.alg.dense.mult.VectorVectorMult#innerProd(org.ejml.data.D1Matrix64F, org.ejml.data.D1Matrix64F)} *

* * @param a The matrix being multiplied. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multInner( RowD1Matrix64F a , RowD1Matrix64F c ) { if( a.numCols != c.numCols || a.numCols != c.numRows ) throw new IllegalArgumentException("Rows and columns of 'c' must be the same as the columns in 'a'"); if( a.numCols >= EjmlParameters.MULT_INNER_SWITCH ) { MatrixMultProduct.inner_small(a, c); } else { MatrixMultProduct.inner_reorder(a, c); } } /** *

Computes the matrix multiplication outer product:
*
* c = a * aT
*
* cij = ∑k=1:m { aik * ajk} *

* *

* Is faster than using a generic matrix multiplication by taking advantage of symmetry. *

* * @param a The matrix being multiplied. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multOuter( RowD1Matrix64F a , RowD1Matrix64F c ) { if( a.numRows != c.numCols || a.numRows != c.numRows ) throw new IllegalArgumentException("Rows and columns of 'c' must be the same as the rows in 'a'"); MatrixMultProduct.outer(a, c); } /** *

* Performs the following operation:
*
* c = c + a * b
* cij = cij + ∑k=1:n { aik * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAdd( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numCols == 1 ) { MatrixVectorMult.multAdd(a,b,c); } else { if( b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multAdd_reorder(a,b,c); } else { MatrixMatrixMult.multAdd_small(a,b,c); } } } /** *

* Performs the following operation:
*
* c = c + α * a * b
* cij = cij + α * ∑k=1:n { aik * bkj} *

* * @param alpha scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAdd( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multAdd_reorder(alpha,a,b,c); } else { MatrixMatrixMult.multAdd_small(alpha,a,b,c); } } /** *

* Performs the following operation:
*
* c = c + aT * b
* cij = cij + ∑k=1:n { aki * bkj} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransA( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numCols == 1 ) { if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixVectorMult.multAddTransA_reorder(a,b,c); } else { MatrixVectorMult.multAddTransA_small(a,b,c); } } else { if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multAddTransA_reorder(a,b,c); } else { MatrixMatrixMult.multAddTransA_small(a,b,c); } } } /** *

* Performs the following operation:
*
* c = c + α * aT * b
* cij =cij + α * ∑k=1:n { aki * bkj} *

* * @param alpha scaling factor * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransA( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH || b.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixMatrixMult.multAddTransA_reorder(alpha,a,b,c); } else { MatrixMatrixMult.multAddTransA_small(alpha,a,b,c); } } /** *

* Performs the following operation:
*
* c = c + a * bT
* cij = cij + ∑k=1:n { aik * bjk} *

* * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransB( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { MatrixMatrixMult.multAddTransB(a,b,c); } /** *

* Performs the following operation:
*
* c = c + α * a * bT
* cij = cij + α * ∑k=1:n { aik * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransB( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here MatrixMatrixMult.multAddTransB(alpha,a,b,c); } /** *

* Performs the following operation:
*
* c = c + aT * bT
* cij = cij + ∑k=1:n { aki * bjk} *

* * @param a The left matrix in the multiplication operation. Not Modified. * @param b The right matrix in the multiplication operation. Not Modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransAB( RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { if( b.numRows == 1 ) { // there are significantly faster algorithms when dealing with vectors if( a.numCols >= EjmlParameters.MULT_COLUMN_SWITCH ) { MatrixVectorMult.multAddTransA_reorder(a,b,c); } else { MatrixVectorMult.multAddTransA_small(a,b,c); } } else if( a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH ) { MatrixMatrixMult.multAddTransAB_aux(a,b,c,null); } else { MatrixMatrixMult.multAddTransAB(a,b,c); } } /** *

* Performs the following operation:
*
* c = c + α * aT * bT
* cij = cij + α * ∑k=1:n { aki * bjk} *

* * @param alpha Scaling factor. * @param a The left matrix in the multiplication operation. Not Modified. * @param b The right matrix in the multiplication operation. Not Modified. * @param c Where the results of the operation are stored. Modified. */ public static void multAddTransAB( double alpha , RowD1Matrix64F a , RowD1Matrix64F b , RowD1Matrix64F c ) { // TODO add a matrix vectory multiply here if( a.numCols >= EjmlParameters.MULT_TRANAB_COLUMN_SWITCH ) { MatrixMatrixMult.multAddTransAB_aux(alpha,a,b,c,null); } else { MatrixMatrixMult.multAddTransAB(alpha,a,b,c); } } /** *

* Solves for x in the following equation:
*
* A*x = b *

* *

* If the system could not be solved then false is returned. If it returns true * that just means the algorithm finished operating, but the results could still be bad * because 'A' is singular or nearly singular. *

* *

* If repeat calls to solve are being made then one should consider using {@link LinearSolverFactory} * instead. *

* *

* It is ok for 'b' and 'x' to be the same matrix. *

* * @param a A matrix that is m by n. Not modified. * @param b A matrix that is n by k. Not modified. * @param x A matrix that is m by k. Modified. * * @return true if it could invert the matrix false if it could not. */ public static boolean solve( DenseMatrix64F a , DenseMatrix64F b , DenseMatrix64F x ) { LinearSolver solver = LinearSolverFactory.general(a.numRows,a.numCols); // make sure the inputs 'a' and 'b' are not modified solver = new LinearSolverSafe(solver); if( !solver.setA(a) ) return false; solver.solve(b,x); return true; } /** *

Performs an "in-place" transpose.

* *

* For square matrices the transpose is truly in-place and does not require * additional memory. For non-square matrices, internally a temporary matrix is declared and * {@link #transpose(org.ejml.data.DenseMatrix64F, org.ejml.data.DenseMatrix64F)} is invoked. *

* * @param mat The matrix that is to be transposed. Modified. */ public static void transpose( DenseMatrix64F mat ) { if( mat.numCols == mat.numRows ){ TransposeAlgs.square(mat); } else { DenseMatrix64F b = new DenseMatrix64F(mat.numCols,mat.numRows); transpose(mat,b); mat.setReshape(b); } } /** *

* Transposes matrix 'a' and stores the results in 'b':
*
* bij = aji
* where 'b' is the transpose of 'a'. *

* * @param A The original matrix. Not modified. * @param A_tran Where the transpose is stored. If null a new matrix is created. Modified. * @return The transposed matrix. */ public static DenseMatrix64F transpose( DenseMatrix64F A, DenseMatrix64F A_tran) { if( A_tran == null ) { A_tran = new DenseMatrix64F(A.numCols,A.numRows); } else { if( A.numRows != A_tran.numCols || A.numCols != A_tran.numRows ) { throw new IllegalArgumentException("Incompatible matrix dimensions"); } } if( A.numRows > EjmlParameters.TRANSPOSE_SWITCH && A.numCols > EjmlParameters.TRANSPOSE_SWITCH ) TransposeAlgs.block(A,A_tran,EjmlParameters.BLOCK_WIDTH); else TransposeAlgs.standard(A,A_tran); return A_tran; } /** *

* This computes the trace of the matrix:
*
* trace = ∑i=1:n { aii }
* where n = min(numRows,numCols) *

* * @param a A square matrix. Not modified. */ public static double trace( RowD1Matrix64F a ) { int N = Math.min(a.numRows,a.numCols); double sum = 0; int index = 0; for( int i = 0; i < N; i++ ) { sum += a.get(index); index += 1 + a.numCols; } return sum; } /** * Returns the determinant of the matrix. If the inverse of the matrix is also * needed, then using {@link org.ejml.alg.dense.decomposition.lu.LUDecompositionAlt_D64} directly (or any * similar algorithm) can be more efficient. * * @param mat The matrix whose determinant is to be computed. Not modified. * @return The determinant. */ public static double det( DenseMatrix64F mat ) { int numCol = mat.getNumCols(); int numRow = mat.getNumRows(); if( numCol != numRow ) { throw new IllegalArgumentException("Must be a square matrix."); } else if( numCol <= UnrolledDeterminantFromMinor.MAX ) { // slight performance boost overall by doing it this way // when it was the case statement the VM did some strange optimization // and made case 2 about 1/2 the speed if( numCol >= 2 ) { return UnrolledDeterminantFromMinor.det(mat); } else { return mat.get(0); } } else { LUDecompositionAlt_D64 alg = new LUDecompositionAlt_D64(); if( alg.inputModified() ) { mat = mat.copy(); } if( !alg.decompose(mat) ) return 0.0; return alg.computeDeterminant(); } } /** *

* Performs a matrix inversion operation on the specified matrix and stores the results * in the same matrix.
*
* a = a-1 *

* *

* If the algorithm could not invert the matrix then false is returned. If it returns true * that just means the algorithm finished. The results could still be bad * because the matrix is singular or nearly singular. *

* * @param mat The matrix that is to be inverted. Results are stored here. Modified. * @return true if it could invert the matrix false if it could not. */ public static boolean invert( DenseMatrix64F mat) { if( mat.numCols <= UnrolledInverseFromMinor.MAX ) { if( mat.numCols != mat.numRows ) { throw new IllegalArgumentException("Must be a square matrix."); } if( mat.numCols >= 2 ) { UnrolledInverseFromMinor.inv(mat,mat); } else { mat.set(0, 1.0/mat.get(0)); } } else { LUDecompositionAlt_D64 alg = new LUDecompositionAlt_D64(); LinearSolverLu solver = new LinearSolverLu(alg); if( solver.setA(mat) ) { solver.invert(mat); } else { return false; } } return true; } /** *

* Performs a matrix inversion operation that does not modify the original * and stores the results in another matrix. The two matrices must have the * same dimension.
*
* b = a-1 *

* *

* If the algorithm could not invert the matrix then false is returned. If it returns true * that just means the algorithm finished. The results could still be bad * because the matrix is singular or nearly singular. *

* *

* For medium to large matrices there might be a slight performance boost to using * {@link LinearSolverFactory} instead. *

* * @param mat The matrix that is to be inverted. Not modified. * @param result Where the inverse matrix is stored. Modified. * @return true if it could invert the matrix false if it could not. */ public static boolean invert( DenseMatrix64F mat, DenseMatrix64F result ) { if( mat.numCols <= UnrolledInverseFromMinor.MAX ) { if( mat.numCols != mat.numRows ) { throw new IllegalArgumentException("Must be a square matrix."); } if( result.numCols >= 2 ) { UnrolledInverseFromMinor.inv(mat,result); } else { result.set(0, 1.0/mat.get(0)); } } else { LUDecompositionAlt_D64 alg = new LUDecompositionAlt_D64(); LinearSolverLu solver = new LinearSolverLu(alg); if( solver.modifiesA() ) mat = mat.copy(); if( !solver.setA(mat)) return false; solver.invert(result); } return true; } /** *

* Computes the Moore-Penrose pseudo-inverse:
*
* pinv(A) = (ATA)-1 AT
* or
* pinv(A) = AT(AAT)-1
*

*

* Internally it uses {@link org.ejml.alg.dense.linsol.svd.SolvePseudoInverseSvd} to compute the inverse. For performance reasons, this should only * be used when a matrix is singular or nearly singular. *

* @param A A m by n Matrix. Not modified. * @param invA Where the computed pseudo inverse is stored. n by m. Modified. * @return */ public static void pinv( DenseMatrix64F A , DenseMatrix64F invA ) { LinearSolver solver = LinearSolverFactory.pseudoInverse(true); if( solver.modifiesA()) A = A.copy(); if( !solver.setA(A) ) throw new IllegalArgumentException("Invert failed, maybe a bug?"); solver.invert(invA); } /** * Converts the columns in a matrix into a set of vectors. * * @param A Matrix. Not modified. * @param v * @return An array of vectors. */ public static DenseMatrix64F[] columnsToVector(DenseMatrix64F A, DenseMatrix64F[] v) { DenseMatrix64F []ret; if( v == null || v.length < A.numCols ) { ret = new DenseMatrix64F[ A.numCols ]; } else { ret = v; } for( int i = 0; i < ret.length; i++ ) { if( ret[i] == null ) { ret[i] = new DenseMatrix64F(A.numRows,1); } else { ret[i].reshape(A.numRows,1, false); } DenseMatrix64F u = ret[i]; for( int j = 0; j < A.numRows; j++ ) { u.set(j,0, A.get(j,i)); } } return ret; } /** * Converts the rows in a matrix into a set of vectors. * * @param A Matrix. Not modified. * @param v * @return An array of vectors. */ public static DenseMatrix64F[] rowsToVector(DenseMatrix64F A, DenseMatrix64F[] v) { DenseMatrix64F []ret; if( v == null || v.length < A.numRows ) { ret = new DenseMatrix64F[ A.numRows ]; } else { ret = v; } for( int i = 0; i < ret.length; i++ ) { if( ret[i] == null ) { ret[i] = new DenseMatrix64F(A.numCols,1); } else { ret[i].reshape(A.numCols,1, false); } DenseMatrix64F u = ret[i]; for( int j = 0; j < A.numCols; j++ ) { u.set(j,0, A.get(i,j)); } } return ret; } /** * Sets all the diagonal elements equal to one and everything else equal to zero. * If this is a square matrix then it will be an identity matrix. * * @see #identity(int) * * @param mat A square matrix. */ public static void setIdentity( RowD1Matrix64F mat ) { int width = mat.numRows < mat.numCols ? mat.numRows : mat.numCols; Arrays.fill(mat.data,0,mat.getNumElements(),0); int index = 0; for( int i = 0; i < width; i++ , index += mat.numCols + 1) { mat.data[index] = 1; } } /** *

* Creates an identity matrix of the specified size.
*
* aij = 0 if i ≠ j
* aij = 1 if i = j
*

* * @param width The width and height of the identity matrix. * @return A new instance of an identity matrix. */ public static DenseMatrix64F identity( int width ) { DenseMatrix64F ret = new DenseMatrix64F(width,width); for( int i = 0; i < width; i++ ) { ret.set(i,i,1.0); } return ret; } /** * Creates a rectangular matrix which is zero except along the diagonals. * * @param numRows Number of rows in the matrix. * @param numCols NUmber of columns in the matrix. * @return A matrix with diagonal elements equal to one. */ public static DenseMatrix64F identity( int numRows , int numCols ) { DenseMatrix64F ret = new DenseMatrix64F(numRows,numCols); int small = numRows < numCols ? numRows : numCols; for( int i = 0; i < small; i++ ) { ret.set(i,i,1.0); } return ret; } /** *

* Creates a new square matrix whose diagonal elements are specified by diagEl and all * the other elements are zero.
*
* aij = 0 if i ≤ j
* aij = diag[i] if i = j
*

* * @see #diagR * * @param diagEl Contains the values of the diagonal elements of the resulting matrix. * @return A new matrix. */ public static DenseMatrix64F diag( double ...diagEl ) { return diag(null,diagEl.length,diagEl); } /** * @see #diag(double...) */ public static DenseMatrix64F diag( DenseMatrix64F ret , int width , double ...diagEl ) { if( ret == null ) { ret = new DenseMatrix64F(width,width); } else { if( ret.numRows != width || ret.numCols != width ) throw new IllegalArgumentException("Unexpected matrix size"); CommonOps.fill(ret, 0); } for( int i = 0; i < width; i++ ) { ret.unsafe_set(i, i, diagEl[i]); } return ret; } /** *

* Creates a new rectangular matrix whose diagonal elements are specified by diagEl and all * the other elements are zero.
*
* aij = 0 if i ≤ j
* aij = diag[i] if i = j
*

* * @see #diag * * @param numRows Number of rows in the matrix. * @param numCols Number of columns in the matrix. * @param diagEl Contains the values of the diagonal elements of the resulting matrix. * @return A new matrix. */ public static DenseMatrix64F diagR( int numRows , int numCols , double ...diagEl ) { DenseMatrix64F ret = new DenseMatrix64F(numRows,numCols); int o = Math.min(numRows,numCols); for( int i = 0; i < o; i++ ) { ret.set(i,i,diagEl[i]); } return ret; } /** *

* The Kronecker product of two matrices is defined as:
* Cij = aijB
* where Cij is a sub matrix inside of C ∈ ℜ m*k × n*l, * A ∈ ℜ m × n, and B ∈ ℜ k × l. *

* * @param A The left matrix in the operation. Not modified. * @param B The right matrix in the operation. Not modified. * @param C Where the results of the operation are stored. Modified. * @return The results of the operation. */ public static void kron( DenseMatrix64F A , DenseMatrix64F B , DenseMatrix64F C ) { int numColsC = A.numCols*B.numCols; int numRowsC = A.numRows*B.numRows; if( C.numCols != numColsC || C.numRows != numRowsC) { throw new IllegalArgumentException("C does not have the expected dimensions"); } // TODO see comment below // this will work well for small matrices // but an alternative version should be made for large matrices for( int i = 0; i < A.numRows; i++ ) { for( int j = 0; j < A.numCols; j++ ) { double a = A.get(i,j); for( int rowB = 0; rowB < B.numRows; rowB++ ) { for( int colB = 0; colB < B.numCols; colB++ ) { double val = a*B.get(rowB,colB); C.set(i*B.numRows+rowB,j*B.numCols+colB,val); } } } } } /** *

* Extracts a submatrix from 'src' and inserts it in a submatrix in 'dst'. *

*

* si-y0 , j-x0 = oij for all y0 ≤ i < y1 and x0 ≤ j < x1
*
* where 'sij' is an element in the submatrix and 'oij' is an element in the * original matrix. *

* * @param src The original matrix which is to be copied. Not modified. * @param srcX0 Start column. * @param srcX1 Stop column+1. * @param srcY0 Start row. * @param srcY1 Stop row+1. * @param dst Where the submatrix are stored. Modified. * @param dstY0 Start row in dst. * @param dstX0 start column in dst. */ public static void extract( ReshapeMatrix64F src, int srcY0, int srcY1, int srcX0, int srcX1, ReshapeMatrix64F dst , int dstY0, int dstX0 ) { if( srcY1 < srcY0 || srcY0 < 0 || srcY1 > src.numRows ) throw new IllegalArgumentException("srcY1 < srcY0 || srcY0 < 0 || srcY1 > src.numRows"); if( srcX1 < srcX0 || srcX0 < 0 || srcX1 > src.numCols ) throw new IllegalArgumentException("srcX1 < srcX0 || srcX0 < 0 || srcX1 > src.numCols"); int w = srcX1-srcX0; int h = srcY1-srcY0; if( dstY0+h > dst.numRows ) throw new IllegalArgumentException("dst is too small in rows"); if( dstX0+w > dst.numCols ) throw new IllegalArgumentException("dst is too small in columns"); // interestingly, the performance is only different for small matrices but identical for larger ones if( src instanceof DenseMatrix64F && dst instanceof DenseMatrix64F ) { ImplCommonOps_DenseMatrix64F.extract((DenseMatrix64F)src,srcY0,srcX0,(DenseMatrix64F)dst,dstY0,dstX0, h, w); } else { ImplCommonOps_Matrix64F.extract(src,srcY0,srcX0,dst,dstY0,dstX0, h, w); } } /** *

* Creates a new matrix which is the specified submatrix of 'src' *

*

* si-y0 , j-x0 = oij for all y0 ≤ i < y1 and x0 ≤ j < x1
*
* where 'sij' is an element in the submatrix and 'oij' is an element in the * original matrix. *

* * @param src The original matrix which is to be copied. Not modified. * @param srcX0 Start column. * @param srcX1 Stop column+1. * @param srcY0 Start row. * @param srcY1 Stop row+1. * @return Extracted submatrix. */ public static DenseMatrix64F extract( DenseMatrix64F src, int srcY0, int srcY1, int srcX0, int srcX1 ) { if( srcY1 <= srcY0 || srcY0 < 0 || srcY1 > src.numRows ) throw new IllegalArgumentException("srcY1 <= srcY0 || srcY0 < 0 || srcY1 > src.numRows"); if( srcX1 <= srcX0 || srcX0 < 0 || srcX1 > src.numCols ) throw new IllegalArgumentException("srcX1 <= srcX0 || srcX0 < 0 || srcX1 > src.numCols"); int w = srcX1-srcX0; int h = srcY1-srcY0; DenseMatrix64F dst = new DenseMatrix64F(h,w); ImplCommonOps_DenseMatrix64F.extract(src,srcY0,srcX0,dst,0,0, h, w); return dst; } /** *

* Extracts the diagonal elements 'src' write it to the 'dst' vector. 'dst' * can either be a row or column vector. *

* * @param src Matrix whose diagonal elements are being extracted. Not modified. * @param dst A vector the results will be written into. Modified. */ public static void extractDiag( DenseMatrix64F src, DenseMatrix64F dst ) { int N = Math.min(src.numRows, src.numCols); if( !MatrixFeatures.isVector(dst) ) { throw new IllegalArgumentException("Expected a vector for dst."); } else if( dst.getNumElements() != N ) { throw new IllegalArgumentException("Expected "+N+" elements in dst."); } for( int i = 0; i < N; i++ ) { dst.set( i , src.unsafe_get(i,i) ); } } /** * Inserts matrix 'src' into matrix 'dest' with the (0,0) of src at (row,col) in dest. * This is equivalent to calling extract(src,0,src.numRows,0,src.numCols,dest,destY0,destX0). * * @param src matrix that is being copied into dest. Not modified. * @param dest Where src is being copied into. Modified. * @param destY0 Start row for the copy into dest. * @param destX0 Start column for the copy into dest. */ public static void insert( ReshapeMatrix64F src, ReshapeMatrix64F dest, int destY0, int destX0) { extract(src,0,src.numRows,0,src.numCols,dest,destY0,destX0); } /** *

* Returns the value of the element in the matrix that has the largest value.
*
* Max{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static double elementMax( D1Matrix64F a ) { final int size = a.getNumElements(); double max = a.get(0); for( int i = 1; i < size; i++ ) { double val = a.get(i); if( val >= max ) { max = val; } } return max; } /** *

* Returns the absolute value of the element in the matrix that has the largest absolute value.
*
* Max{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max abs element value of the matrix. */ public static double elementMaxAbs( D1Matrix64F a ) { final int size = a.getNumElements(); double max = 0; for( int i = 0; i < size; i++ ) { double val = Math.abs(a.get( i )); if( val > max ) { max = val; } } return max; } /** *

* Returns the value of the element in the matrix that has the minimum value.
*
* Min{ aij } for all i and j
*

* * @param a A matrix. Not modified. * @return The value of element in the matrix with the minimum value. */ public static double elementMin( D1Matrix64F a ) { final int size = a.getNumElements(); double min = a.get(0); for( int i = 1; i < size; i++ ) { double val = a.get(i); if( val < min ) { min = val; } } return min; } /** *

* Returns the absolute value of the element in the matrix that has the smallest absolute value.
*
* Min{ |aij| } for all i and j
*

* * @param a A matrix. Not modified. * @return The max element value of the matrix. */ public static double elementMinAbs( D1Matrix64F a ) { final int size = a.getNumElements(); double min = Double.MAX_VALUE; for( int i = 0; i < size; i++ ) { double val = Math.abs(a.get(i)); if( val < min ) { min = val; } } return min; } /** *

Performs the an element by element multiplication operation:
*
* aij = aij * bij
*

* @param a The left matrix in the multiplication operation. Modified. * @param b The right matrix in the multiplication operation. Not modified. */ public static void elementMult( D1Matrix64F a , D1Matrix64F b ) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.times(i , b.get(i)); } } /** *

Performs the an element by element multiplication operation:
*
* cij = aij * bij
*

* @param a The left matrix in the multiplication operation. Not modified. * @param b The right matrix in the multiplication operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void elementMult( D1Matrix64F a , D1Matrix64F b , D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numRows != c.numRows || a.numCols != c.numCols ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set( i , a.get(i) * b.get(i) ); } } /** *

Performs the an element by element division operation:
*
* aij = aij / bij
*

* @param a The left matrix in the division operation. Modified. * @param b The right matrix in the division operation. Not modified. */ public static void elementDiv( D1Matrix64F a , D1Matrix64F b ) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.div(i , b.get(i)); } } /** *

Performs the an element by element division operation:
*
* cij = aij / bij
*

* @param a The left matrix in the division operation. Not modified. * @param b The right matrix in the division operation. Not modified. * @param c Where the results of the operation are stored. Modified. */ public static void elementDiv( D1Matrix64F a , D1Matrix64F b , D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numRows != c.numRows || a.numCols != c.numCols ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set( i , a.get(i) / b.get(i) ); } } /** *

* Computes the sum of all the elements in the matrix:
*
* sum(i=1:m , j=1:n ; aij) *

* * @param mat An m by n matrix. Not modified. * @return The sum of the elements. */ public static double elementSum( D1Matrix64F mat ) { double total = 0; int size = mat.getNumElements(); for( int i = 0; i < size; i++ ) { total += mat.get(i); } return total; } /** *

* Computes the sum of the absolute value all the elements in the matrix:
*
* sum(i=1:m , j=1:n ; |aij|) *

* * @param mat An m by n matrix. Not modified. * @return The sum of the absolute value of each element. */ public static double elementSumAbs( D1Matrix64F mat ) { double total = 0; int size = mat.getNumElements(); for( int i = 0; i < size; i++ ) { total += Math.abs(mat.get(i)); } return total; } /** *

* Element-wise power operation
* cij = aij ^ bij *

* * @param A left side * @param B right side * @param C output (modified) */ public static void elementPower( D1Matrix64F A , D1Matrix64F B , D1Matrix64F C ) { if( A.numRows != B.numRows || A.numRows != C.numRows || A.numCols != B.numCols || A.numCols != C.numCols ) { throw new IllegalArgumentException("All matrices must be the same shape"); } int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { C.data[i] = Math.pow(A.data[i],B.data[i]); } } /** *

* Element-wise power operation
* cij = a ^ bij *

* * @param a left scalar * @param B right side * @param C output (modified) */ public static void elementPower( double a , D1Matrix64F B , D1Matrix64F C ) { if( B.numRows != C.numRows || B.numCols != C.numCols ) { throw new IllegalArgumentException("All matrices must be the same shape"); } int size = B.getNumElements(); for( int i = 0; i < size; i++ ) { C.data[i] = Math.pow(a,B.data[i]); } } /** *

* Element-wise power operation
* cij = aij ^ b *

* * @param A left side * @param b right scalar * @param C output (modified) */ public static void elementPower( D1Matrix64F A , double b, D1Matrix64F C ) { if( A.numRows != C.numRows || A.numCols != C.numCols ) { throw new IllegalArgumentException("All matrices must be the same shape"); } int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { C.data[i] = Math.pow(A.data[i],b); } } /** *

* Element-wise log operation
* cij = Math.log(aij) *

* * @param A input * @param C output (modified) */ public static void elementLog( D1Matrix64F A , D1Matrix64F C ) { if( A.numCols != C.numCols || A.numRows != C.numRows ) { throw new IllegalArgumentException("All matrices must be the same shape"); } int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { C.data[i] = Math.log(A.data[i]); } } /** *

* Element-wise exp operation
* cij = Math.log(aij) *

* * @param A input * @param C output (modified) */ public static void elementExp( D1Matrix64F A , D1Matrix64F C ) { if( A.numCols != C.numCols || A.numRows != C.numRows ) { throw new IllegalArgumentException("All matrices must be the same shape"); } int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { C.data[i] = Math.exp(A.data[i]); } } /** *

* Computes the sum of each row in the input matrix and returns the results in a vector:
*
* bj = sum(i=1:n ; |aji|) *

* * @param input INput matrix whose rows are summed. * @param output Optional storage for output. Must be a vector. If null a row vector is returned. Modified. * @return Vector containing the sum of each row in the input. */ public static DenseMatrix64F sumRows( DenseMatrix64F input , DenseMatrix64F output ) { if( output == null ) { output = new DenseMatrix64F(input.numRows,1); } else if( output.getNumElements() != input.numRows ) throw new IllegalArgumentException("Output does not have enough elements to store the results"); for( int row = 0; row < input.numRows; row++ ) { double total = 0; int end = (row+1)*input.numCols; for( int index = row*input.numCols; index < end; index++ ) { total += input.data[index]; } output.set(row,total); } return output; } /** *

* Computes the sum of each column in the input matrix and returns the results in a vector:
*
* bj = sum(i=1:m ; |aij|) *

* * @param input INput matrix whose rows are summed. * @param output Optional storage for output. Must be a vector. If null a column vector is returned. Modified. * @return Vector containing the sum of each row in the input. */ public static DenseMatrix64F sumCols( DenseMatrix64F input , DenseMatrix64F output ) { if( output == null ) { output = new DenseMatrix64F(1,input.numCols); } else if( output.getNumElements() != input.numCols ) throw new IllegalArgumentException("Output does not have enough elements to store the results"); for( int cols = 0; cols < input.numCols; cols++ ) { double total = 0; int index = cols; int end = index + input.numCols*input.numRows; for( ; index < end; index += input.numCols ) { total += input.data[index]; } output.set(cols,total); } return output; } /** *

Performs the following operation:
*
* a = a + b
* aij = aij + bij
*

* * @param a A Matrix. Modified. * @param b A Matrix. Not modified. */ public static void addEquals( D1Matrix64F a , D1Matrix64F b ) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.plus(i, b.get(i)); } } /** *

Performs the following operation:
*
* a = a + β * b
* aij = aij + β * bij *

* * @param beta The number that matrix 'b' is multiplied by. * @param a A Matrix. Modified. * @param b A Matrix. Not modified. */ public static void addEquals( D1Matrix64F a , double beta, D1Matrix64F b ) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.plus(i, beta * b.get(i)); } } /** *

Performs the following operation:
*
* c = a + b
* cij = aij + bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param c A Matrix where the results are stored. Modified. */ public static void add( final D1Matrix64F a , final D1Matrix64F b , final D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numCols != c.numCols || a.numRows != c.numRows ) { throw new IllegalArgumentException("The matrices are not all the same dimension."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set( i , a.get(i)+b.get(i) ); } } /** *

Performs the following operation:
*
* c = a + β * b
* cij = aij + β * bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param beta Scaling factor for matrix b. * @param b A Matrix. Not modified. * @param c A Matrix where the results are stored. Modified. */ public static void add( D1Matrix64F a , double beta , D1Matrix64F b , D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numCols != c.numCols || a.numRows != c.numRows ) { throw new IllegalArgumentException("The matrices are not all the same dimension."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set( i , a.get(i)+beta*b.get(i) ); } } /** *

Performs the following operation:
*
* c = α * a + β * b
* cij = α * aij + β * bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param alpha A scaling factor for matrix a. * @param a A Matrix. Not modified. * @param beta A scaling factor for matrix b. * @param b A Matrix. Not modified. * @param c A Matrix where the results are stored. Modified. */ public static void add( double alpha , D1Matrix64F a , double beta , D1Matrix64F b , D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numCols != c.numCols || a.numRows != c.numRows ) { throw new IllegalArgumentException("The matrices are not all the same dimension."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set(i , alpha*a.get(i) + beta*b.get(i)); } } /** *

Performs the following operation:
*
* c = α * a + b
* cij = α * aij + bij
*

* *

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param alpha A scaling factor for matrix a. * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param c A Matrix where the results are stored. Modified. */ public static void add( double alpha , D1Matrix64F a , D1Matrix64F b , D1Matrix64F c ) { if( a.numCols != b.numCols || a.numRows != b.numRows || a.numCols != c.numCols || a.numRows != c.numRows ) { throw new IllegalArgumentException("The matrices are not all the same dimension."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.set( i , alpha*a.get(i) + b.get(i)); } } /** *

Performs an in-place scalar addition:
*
* a = a + val
* aij = aij + val
*

* * @param a A matrix. Modified. * @param val The value that's added to each element. */ public static void add( D1Matrix64F a , double val ) { final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.plus( i , val); } } /** *

Performs scalar addition:
*
* c = a + val
* cij = aij + val
*

* * @param a A matrix. Not modified. * @param c A matrix. Modified. * @param val The value that's added to each element. */ public static void add( D1Matrix64F a , double val , D1Matrix64F c ) { if( a.numRows != c.numRows || a.numCols != c.numCols ) { throw new IllegalArgumentException("Dimensions of a and c do not match."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.data[i] = a.data[i] + val; } } /** *

Performs matrix scalar subtraction:
*
* c = a - val
* cij = aij - val
*

* * @param a (input) A matrix. Not modified. * @param val (input) The value that's subtracted to each element. * @param c (Output) A matrix. Modified. */ public static void subtract( D1Matrix64F a , double val , D1Matrix64F c ) { if( a.numRows != c.numRows || a.numCols != c.numCols ) { throw new IllegalArgumentException("Dimensions of a and c do not match."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.data[i] = a.data[i] - val; } } /** *

Performs matrix scalar subtraction:
*
* c = val - a
* cij = val - aij
*

* * @param val (input) The value that's subtracted to each element. * @param a (input) A matrix. Not modified. * @param c (Output) A matrix. Modified. */ public static void subtract( double val , D1Matrix64F a , D1Matrix64F c ) { if( a.numRows != c.numRows || a.numCols != c.numCols ) { throw new IllegalArgumentException("Dimensions of a and c do not match."); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.data[i] = val - a.data[i]; } } /** *

Performs the following subtraction operation:
*
* a = a - b
* aij = aij - bij *

* * @param a A Matrix. Modified. * @param b A Matrix. Not modified. */ public static void subtractEquals(D1Matrix64F a, D1Matrix64F b) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { a.data[i] -= b.data[i]; } } /** *

Performs the following subtraction operation:
*
* c = a - b
* cij = aij - bij *

*

* Matrix C can be the same instance as Matrix A and/or B. *

* * @param a A Matrix. Not modified. * @param b A Matrix. Not modified. * @param c A Matrix. Modified. */ public static void subtract(D1Matrix64F a, D1Matrix64F b, D1Matrix64F c) { if( a.numCols != b.numCols || a.numRows != b.numRows ) { throw new IllegalArgumentException("The 'a' and 'b' matrices do not have compatible dimensions"); } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { c.data[i] = a.data[i] - b.data[i]; } } /** *

* Performs an in-place element by element scalar multiplication.
*
* aij = α*aij *

* * @param a The matrix that is to be scaled. Modified. * @param alpha the amount each element is multiplied by. */ public static void scale( double alpha , D1Matrix64F a ) { // on very small matrices (2 by 2) the call to getNumElements() can slow it down // slightly compared to other libraries since it involves an extra multiplication. final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { a.data[i] *= alpha; } } /** *

* Performs an element by element scalar multiplication.
*
* bij = α*aij *

* * @param alpha the amount each element is multiplied by. * @param a The matrix that is to be scaled. Not modified. * @param b Where the scaled matrix is stored. Modified. */ public static void scale( double alpha , D1Matrix64F a , D1Matrix64F b) { if( a.numRows != b.numRows || a.numCols != b.numCols ) throw new IllegalArgumentException("Matrices must have the same shape"); final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { b.data[i] = a.data[i]*alpha; } } /** *

* Performs an in-place element by element scalar division with the scalar on top.
*
* aij = &alpha/aij; *

* * @param a The matrix whose elements are divide the scalar. Modified. * @param alpha top value in division */ public static void divide( double alpha , D1Matrix64F a ) { final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { a.data[i] = alpha/a.data[i]; } } /** *

* Performs an in-place element by element scalar division with the scalar on bottom.
*
* aij = aij/α *

* * @param a The matrix whose elements are to be divided. Modified. * @param alpha the amount each element is divided by. */ public static void divide( D1Matrix64F a , double alpha) { final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { a.data[i] /= alpha; } } /** *

* Performs an element by element scalar division with the scalar on top.
*
* bij = &alpha/aij; *

* * @param alpha The numerator. * @param a The matrix whose elements are the divisor. Not modified. * @param b Where the results are stored. Modified. */ public static void divide( double alpha , D1Matrix64F a , D1Matrix64F b) { if( a.numRows != b.numRows || a.numCols != b.numCols ) throw new IllegalArgumentException("Matrices must have the same shape"); final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { b.data[i] = alpha/a.data[i]; } } /** *

* Performs an element by element scalar division with the scalar on botton.
*
* bij = aij /α *

* * @param a The matrix whose elements are to be divided. Not modified. * @param alpha the amount each element is divided by. * @param b Where the results are stored. Modified. */ public static void divide( D1Matrix64F a , double alpha , D1Matrix64F b) { if( a.numRows != b.numRows || a.numCols != b.numCols ) throw new IllegalArgumentException("Matrices must have the same shape"); final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { b.data[i] = a.data[i]/alpha; } } /** *

* Changes the sign of every element in the matrix.
*
* aij = -aij *

* * @param a A matrix. Modified. */ public static void changeSign( D1Matrix64F a ) { final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { a.data[i] = -a.data[i]; } } /** *

* Changes the sign of every element in the matrix.
*
* outputij = -inputij *

* * @param input A matrix. Modified. */ public static void changeSign( D1Matrix64F input , D1Matrix64F output) { if( input.numRows != output.numRows || input.numCols != output.numCols ) throw new IllegalArgumentException("Matrices must have the same shape"); final int size = input.getNumElements(); for( int i = 0; i < size; i++ ) { output.data[i] = -input.data[i]; } } /** *

* Sets every element in the matrix to the specified value.
*
* aij = value *

* * @param a A matrix whose elements are about to be set. Modified. * @param value The value each element will have. */ public static void fill(D1Matrix64F a, double value) { Arrays.fill(a.data,0,a.getNumElements(),value); } /** *

* Puts the augmented system matrix into reduced row echelon form (RREF) using Gauss-Jordan * elimination with row (partial) pivots. A matrix is said to be in RREF is the following conditions are true: *

* *
    *
  1. If a row has non-zero entries, then the first non-zero entry is 1. This is known as the leading one.
  2. *
  3. If a column contains a leading one then all other entries in that column are zero.
  4. *
  5. If a row contains a leading 1, then each row above contains a leading 1 further to the left.
  6. *
* *

* [1] Page 19 in, Otter Bretscherm "Linear Algebra with Applications" Prentice-Hall Inc, 1997 *

* * @see RrefGaussJordanRowPivot * * @param A Input matrix. Unmodified. * @param numUnknowns Number of unknowns/columns that are reduced. Set to -1 to default to * Math.min(A.numRows,A.numCols), which works for most systems. * @param reduced Storage for reduced echelon matrix. If null then a new matrix is returned. Modified. * @return Reduced echelon form of A */ public static DenseMatrix64F rref( DenseMatrix64F A , int numUnknowns, DenseMatrix64F reduced ) { if( reduced == null ) { reduced = new DenseMatrix64F(A.numRows,A.numCols); } else if( reduced.numCols != A.numCols || reduced.numRows != A.numRows ) throw new IllegalArgumentException("'re' must have the same shape as the original input matrix"); if( numUnknowns <= 0 ) numUnknowns = Math.min(A.numCols,A.numRows); ReducedRowEchelonForm alg = new RrefGaussJordanRowPivot(); alg.setTolerance(elementMaxAbs(A)* UtilEjml.EPS*Math.max(A.numRows,A.numCols)); reduced.set(A); alg.reduce(reduced, numUnknowns); return reduced; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy