All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.ops.MatrixFeatures Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

The newest version!
/*
 * Copyright (c) 2009-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.ops;

import org.ejml.UtilEjml;
import org.ejml.alg.dense.decomposition.chol.CholeskyDecompositionInner_D64;
import org.ejml.alg.dense.mult.VectorVectorMult;
import org.ejml.data.Complex64F;
import org.ejml.data.D1Matrix64F;
import org.ejml.data.DenseMatrix64F;
import org.ejml.data.ReshapeMatrix64F;
import org.ejml.factory.DecompositionFactory;
import org.ejml.interfaces.decomposition.EigenDecomposition;
import org.ejml.interfaces.decomposition.LUDecomposition;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;


/**
 * 

* Used to compute features that describe the structure of a matrix. *

* *

* Unless explicitly stated otherwise it is assumed that the elements of input matrices * contain only real numbers. If an element is NaN or infinite then the behavior is undefined. * See IEEE 754 for more information on this issue. *

* * @author Peter Abeles */ public class MatrixFeatures { /** * Checks to see if any element in the matrix is NaN. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN. */ public static boolean hasNaN( D1Matrix64F m ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { if( Double.isNaN(m.get(i))) return true; } return false; } /** * Checks to see if any element in the matrix is NaN of Infinite. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN of Infinite. */ public static boolean hasUncountable( D1Matrix64F m ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { double a = m.get(i); if( Double.isNaN(a) || Double.isInfinite(a)) return true; } return false; } /** * Checks to see all the elements in the matrix are zeros * * @param m A matrix. Not modified. * @return True if all elements are zeros or false if not */ public static boolean isZeros( D1Matrix64F m , double tol ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { if( Math.abs(m.get(i)) > tol ) return false; } return true; } /** * Checks to see if the matrix is a vector or not. * * @param mat A matrix. Not modified. * * @return True if it is a vector and false if it is not. */ public static boolean isVector( D1Matrix64F mat ) { return (mat.numCols == 1 || mat.numRows == 1); } /** *

* Checks to see if the matrix is positive definite. *

*

* xT A x > 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * * @return True if it is positive definite and false if it is not. */ public static boolean isPositiveDefinite( DenseMatrix64F A ) { if( !isSquare(A)) return false; CholeskyDecompositionInner_D64 chol = new CholeskyDecompositionInner_D64(true); if( chol.inputModified() ) A = A.copy(); return chol.decompose(A); } /** *

* Checks to see if the matrix is positive semidefinite: *

*

* xT A x >= 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * * @return True if it is positive semidefinite and false if it is not. */ public static boolean isPositiveSemidefinite( DenseMatrix64F A ) { if( !isSquare(A)) return false; EigenDecomposition eig = DecompositionFactory.eig(A.numCols,false); if( eig.inputModified() ) A = A.copy(); eig.decompose(A); for( int i = 0; i < A.numRows; i++ ) { Complex64F v = eig.getEigenvalue(i); if( v.getReal() < 0 ) return false; } return true; } /** * Checks to see if it is a square matrix. A square matrix has * the same number of rows and columns. * * @param mat A matrix. Not modified. * @return True if it is a square matrix and false if it is not. */ public static boolean isSquare( D1Matrix64F mat ) { return mat.numCols == mat.numRows; } /** *

* Returns true if the matrix is symmetric within the tolerance. Only square matrices can be * symmetric. *

*

* A matrix is symmetric if:
* |aij - aji| ≤ tol *

* * @param m A matrix. Not modified. * @param tol Tolerance for how similar two elements need to be. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric( DenseMatrix64F m , double tol ) { if( m.numCols != m.numRows ) return false; double max = CommonOps.elementMaxAbs(m); for( int i = 0; i < m.numRows; i++ ) { for( int j = 0; j < i; j++ ) { double a = m.get(i,j)/max; double b = m.get(j,i)/max; double diff = Math.abs(a-b); if( !(diff <= tol) ) { return false; } } } return true; } /** *

* Returns true if the matrix is perfectly symmetric. Only square matrices can be symmetric. *

*

* A matrix is symmetric if:
* aij == aji *

* * @param m A matrix. Not modified. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric( DenseMatrix64F m ) { return isSymmetric(m,0.0); } /** *

* Checks to see if a matrix is skew symmetric with in tolerance:
*
* -A = AT
* or
* |aij + aji| ≤ tol *

* * @param A The matrix being tested. * @param tol Tolerance for being skew symmetric. * @return True if it is skew symmetric and false if it is not. */ public static boolean isSkewSymmetric( DenseMatrix64F A , double tol ){ if( A.numCols != A.numRows ) return false; for( int i = 0; i < A.numRows; i++ ) { for( int j = 0; j < i; j++ ) { double a = A.get(i,j); double b = A.get(j,i); double diff = Math.abs(a+b); if( !(diff <= tol) ) { return false; } } } return true; } /** * Checks to see if the two matrices are inverses of each other. * * @param a A matrix. Not modified. * @param b A matrix. Not modified. */ public static boolean isInverse( DenseMatrix64F a , DenseMatrix64F b , double tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } int numRows = a.numRows; int numCols = a.numCols; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numCols; j++ ) { double total = 0; for( int k = 0; k < numCols; k++ ) { total += a.get(i,k)*b.get(k,j); } if( i == j ) { if( !(Math.abs(total-1) <= tol) ) return false; } else if( !(Math.abs(total) <= tol) ) return false; } } return true; } /** *

* Checks to see if each element in the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(org.ejml.data.D1Matrix64F, org.ejml.data.D1Matrix64F)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEquals( D1Matrix64F a , D1Matrix64F b , double tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } if( tol == 0.0 ) return isEquals(a,b); final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(tol >= Math.abs(a.get(i) - b.get(i))) ) { return false; } } return true; } /** *

* Checks to see if each element in the upper or lower triangular portion of the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(org.ejml.data.D1Matrix64F, org.ejml.data.D1Matrix64F)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param upper true of upper triangular and false for lower. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEqualsTriangle(ReshapeMatrix64F a, ReshapeMatrix64F b, boolean upper, double tol) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } if( upper ) { for( int i = 0; i < a.numRows; i++ ) { for( int j = i; j < a.numCols; j++ ) { if( Math.abs(a.get(i,j)-b.get(i,j)) > tol ) return false; } } } else { for( int i = 0; i < a.numRows; i++ ) { int end = Math.min(i,a.numCols-1); for( int j = 0; j <= end; j++ ) { if( Math.abs(a.get(i,j)-b.get(i,j)) > tol ) return false; } } } return true; } /** *

* Checks to see if each element in the two matrices are equal: * aij == bij *

* *

* NOTE: If any of the elements are NaN then false is returned. If two corresponding * elements are both positive or negative infinity then they are equal. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @return true if identical and false otherwise. */ public static boolean isEquals( D1Matrix64F a, D1Matrix64F b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(a.get(i) == b.get(i)) ) { return false; } } return true; } /** *

* Checks to see if each corresponding element in the two matrices are * within tolerance of each other or have the some symbolic meaning. This * can handle NaN and Infinite numbers. *

* *

* If both elements are countable then the following equality test is used:
* |aij - bij| ≤ tol.
* Otherwise both numbers must both be Double.NaN, Double.POSITIVE_INFINITY, or * Double.NEGATIVE_INFINITY to be identical. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol Tolerance for equality. * @return true if identical and false otherwise. */ public static boolean isIdentical( D1Matrix64F a, D1Matrix64F b , double tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } if( tol < 0 ) throw new IllegalArgumentException("Tolerance must be greater than or equal to zero."); final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { double valA = a.get(i); double valB = b.get(i); // if either is negative or positive infinity the result will be positive infinity // if either is NaN the result will be NaN double diff = Math.abs(valA-valB); // diff = NaN == false // diff = infinity == false if( tol >= diff ) continue; if( Double.isNaN(valA) ) { return Double.isNaN(valB); } else if( Double.isInfinite(valA) ) { return valA == valB; } else { return false; } } return true; } /** *

* Checks to see if a matrix is orthogonal or isometric. *

* * @param Q The matrix being tested. Not modified. * @param tol Tolerance. * @return True if it passes the test. */ public static boolean isOrthogonal( DenseMatrix64F Q , double tol ) { if( Q.numRows < Q.numCols ) { throw new IllegalArgumentException("The number of rows must be more than or equal to the number of columns"); } DenseMatrix64F u[] = CommonOps.columnsToVector(Q, null); for( int i = 0; i < u.length; i++ ) { DenseMatrix64F a = u[i]; for( int j = i+1; j < u.length; j++ ) { double val = VectorVectorMult.innerProd(a,u[j]); if( !(Math.abs(val) <= tol)) return false; } } return true; } /** * Checks to see if the rows of the provided matrix are linearly independent. * * @param A Matrix whose rows are being tested for linear independence. * @return true if linearly independent and false otherwise. */ public static boolean isRowsLinearIndependent( DenseMatrix64F A ) { // LU decomposition LUDecomposition lu = DecompositionFactory.lu(A.numRows,A.numCols); if( lu.inputModified() ) A = A.copy(); if( !lu.decompose(A)) throw new RuntimeException("Decompositon failed?"); // if they are linearly independent it should not be singular return !lu.isSingular(); } /** * Checks to see if the provided matrix is within tolerance to an identity matrix. * * @param mat Matrix being examined. Not modified. * @param tol Tolerance. * @return True if it is within tolerance to an identify matrix. */ public static boolean isIdentity( DenseMatrix64F mat , double tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( i == j ) { if( !(Math.abs(mat.get(index++)-1) <= tol) ) return false; } else { if( !(Math.abs(mat.get(index++)) <= tol) ) return false; } } } return true; } /** * Checks to see if every value in the matrix is the specified value. * * @param mat The matrix being tested. Not modified. * @param val Checks to see if every element in the matrix has this value. * @param tol True if all the elements are within this tolerance. * @return true if the test passes. */ public static boolean isConstantVal( DenseMatrix64F mat , double val , double tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( !(Math.abs(mat.get(index++)-val) <= tol) ) return false; } } return true; } /** * Checks to see if all the diagonal elements in the matrix are positive. * * @param a A matrix. Not modified. * @return true if all the diagonal elements are positive, false otherwise. */ public static boolean isDiagonalPositive( DenseMatrix64F a ) { for( int i = 0; i < a.numRows; i++ ) { if( !(a.get(i,i) >= 0) ) return false; } return true; } // TODO write this public static boolean isFullRank( DenseMatrix64F a ) { throw new RuntimeException("Implement"); } /** *

* Checks to see if the two matrices are the negative of each other:
*
* aij = -bij *

* * @param a First matrix. Not modified. * @param b Second matrix. Not modified. * @param tol Numerical tolerance. * @return True if they are the negative of each other within tolerance. */ public static boolean isNegative(D1Matrix64F a, D1Matrix64F b, double tol) { if( a.numRows != b.numRows || a.numCols != b.numCols ) throw new IllegalArgumentException("Matrix dimensions must match"); int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(Math.abs(a.get(i)+b.get(i)) <= tol) ) return false; } return true; } /** *

* Checks to see if a matrix is upper triangular or Hessenberg. A Hessenberg matrix of degree N * has the following property:
*
* aij ≤ 0 for all i < j+N
*
* A triangular matrix is a Hessenberg matrix of degree 0. *

* @param A Matrix being tested. Not modified. * @param hessenberg The degree of being hessenberg. * @param tol How close to zero the lower left elements need to be. * @return If it is an upper triangular/hessenberg matrix or not. */ public static boolean isUpperTriangle(DenseMatrix64F A , int hessenberg , double tol ) { if( A.numRows != A.numCols ) return false; for( int i = hessenberg+1; i < A.numRows; i++ ) { for( int j = 0; j < i-hessenberg; j++ ) { if( !(Math.abs(A.get(i,j)) <= tol) ) { return false; } } } return true; } /** * Computes the rank of a matrix using a default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's rank. */ public static int rank( DenseMatrix64F A ) { return rank(A, UtilEjml.EPS*100); } /** * Computes the rank of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's rank. */ public static int rank( DenseMatrix64F A , double threshold ) { SingularValueDecomposition svd = DecompositionFactory.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps.rank(svd, threshold); } /** * Computes the nullity of a matrix using the default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's nullity. */ public static int nullity( DenseMatrix64F A ) { return nullity(A, UtilEjml.EPS*100); } /** * Computes the nullity of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's nullity. */ public static int nullity( DenseMatrix64F A , double threshold ) { SingularValueDecomposition svd = DecompositionFactory.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps.nullity(svd,threshold); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy