org.ejml.ops.MatrixIO Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of core Show documentation
Show all versions of core Show documentation
A fast and easy to use dense matrix linear algebra library written in Java.
The newest version!
/*
* Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.ops;
import org.ejml.data.DenseMatrix64F;
import org.ejml.data.Matrix64F;
import org.ejml.data.ReshapeMatrix64F;
import java.io.*;
/**
* Provides simple to use routines for reading and writing matrices to and from files.
*
* @author Peter Abeles
*/
public class MatrixIO {
/**
* Saves a matrix to disk using Java binary serialization.
*
* @param A The matrix being saved.
* @param fileName Name of the file its being saved at.
* @throws java.io.IOException
*/
public static void saveBin(ReshapeMatrix64F A, String fileName)
throws IOException
{
FileOutputStream fileStream = new FileOutputStream(fileName);
ObjectOutputStream stream = new ObjectOutputStream(fileStream);
try {
stream.writeObject(A);
stream.flush();
} finally {
// clean up
try {
stream.close();
} finally {
fileStream.close();
}
}
}
/**
* Loads a DeneMatrix64F which has been saved to file using Java binary
* serialization.
*
* @param fileName The file being loaded.
* @return DenseMatrix64F
* @throws IOException
*/
public static T loadBin(String fileName)
throws IOException
{
FileInputStream fileStream = new FileInputStream(fileName);
ObjectInputStream stream = new ObjectInputStream(fileStream);
T ret;
try {
ret = (T)stream.readObject();
if( stream.available() != 0 ) {
throw new RuntimeException("File not completely read?");
}
} catch (ClassNotFoundException e) {
throw new RuntimeException(e);
}
stream.close();
return (T)ret;
}
/**
* Saves a matrix to disk using in a Column Space Value (CSV) format. For a
* description of the format see {@link MatrixIO#loadCSV(String)}.
*
* @param A The matrix being saved.
* @param fileName Name of the file its being saved at.
* @throws java.io.IOException
*/
public static void saveCSV( ReshapeMatrix64F A , String fileName )
throws IOException
{
PrintStream fileStream = new PrintStream(fileName);
fileStream.print(A.getNumRows()+" ");
fileStream.println(A.getNumCols());
for( int i = 0; i < A.numRows; i++ ) {
for( int j = 0; j < A.numCols; j++ ) {
fileStream.print(A.get(i,j)+" ");
}
fileStream.println();
}
fileStream.close();
}
/**
* Reads a matrix in which has been encoded using a Column Space Value (CSV)
* file format. The number of rows and columns are read in on the first line. Then
* each row is read in the subsequent lines.
*
* @param fileName The file being loaded.
* @return DenseMatrix64F
* @throws IOException
*/
public static DenseMatrix64F loadCSV( String fileName )
throws IOException
{
FileInputStream fileStream = new FileInputStream(fileName);
ReadMatrixCsv csv = new ReadMatrixCsv(fileStream);
DenseMatrix64F ret = csv.read();
fileStream.close();
return ret;
}
/**
* Reads a matrix in which has been encoded using a Column Space Value (CSV)
* file format. For a description of the format see {@link MatrixIO#loadCSV(String)}.
*
* @param fileName The file being loaded.
* @param numRows number of rows in the matrix.
* @param numCols number of columns in the matrix.
* @return DenseMatrix64F
* @throws IOException
*/
public static DenseMatrix64F loadCSV( String fileName , int numRows , int numCols )
throws IOException
{
FileInputStream fileStream = new FileInputStream(fileName);
ReadMatrixCsv csv = new ReadMatrixCsv(fileStream);
DenseMatrix64F ret = csv.read(numRows,numCols);
fileStream.close();
return ret;
}
public static void print( PrintStream out , Matrix64F mat ) {
print(out,mat,6,3);
}
public static void print(PrintStream out, Matrix64F mat , int numChar , int precision ) {
String format = "%"+numChar+"."+precision+"f ";
print(out, mat,format);
}
public static void print(PrintStream out , Matrix64F mat , String format ) {
String type = ReshapeMatrix64F.class.isAssignableFrom(mat.getClass()) ? "dense" : "dense fixed";
out.println("Type = "+type+" , numRows = "+mat.getNumRows()+" , numCols = "+mat.getNumCols());
format += " ";
for( int y = 0; y < mat.getNumRows(); y++ ) {
for( int x = 0; x < mat.getNumCols(); x++ ) {
out.printf(format,mat.get(y,x));
}
out.println();
}
}
public static void print( PrintStream out , ReshapeMatrix64F mat , String format ,
int row0 , int row1, int col0 , int col1 ) {
out.println("Type = submatrix , rows "+row0+" to "+row1+" columns "+col0+" to "+col1);
format += " ";
for( int y = row0; y < row1; y++ ) {
for( int x = col0; x < col1; x++ ) {
out.printf(format,mat.get(y,x));
}
out.println();
}
}
// public static void main( String []args ) {
// Random rand = new Random(234234);
// DenseMatrix64F A = RandomMatrices.createRandom(50,70,rand);
//
// SingularValueDecomposition decomp = DecompositionFactory.svd();
//
// decomp.decompose(A);
//
// displayMatrix(A,"Original");
// displayMatrix(decomp.getU(false),"U");
// displayMatrix(decomp.getV(false),"V");
// displayMatrix(decomp.getW(null),"W");
// }
}