All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.simple.SimpleEVD Maven / Gradle / Ivy

/*
 * Copyright (c) 2009-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.simple;

import org.ejml.data.Complex64F;
import org.ejml.data.DenseMatrix64F;
import org.ejml.factory.DecompositionFactory;
import org.ejml.interfaces.decomposition.EigenDecomposition;


/**
 * Wrapper around EigenDecomposition for SimpleMatrix
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"unchecked"})
public class SimpleEVD 
{
    private EigenDecomposition eig;

    DenseMatrix64F mat;

    public SimpleEVD( DenseMatrix64F mat )
    {
        this.mat = mat;
        eig = DecompositionFactory.eig(mat.numCols,true);
        if( !eig.decompose(mat))
            throw new RuntimeException("Eigenvalue Decomposition failed");
    }

    /**
     * Returns the number of eigenvalues/eigenvectors.  This is the matrix's dimension.
     *
     * @return number of eigenvalues/eigenvectors.
     */
    public int getNumberOfEigenvalues() {
        return eig.getNumberOfEigenvalues();
    }

    /**
     * 

* Returns an eigenvalue as a complex number. For symmetric matrices the returned eigenvalue will always be a real * number, which means the imaginary component will be equal to zero. *

* *

* NOTE: The order of the eigenvalues is dependent upon the decomposition algorithm used. This means that they may * or may not be ordered by magnitude. For example the QR algorithm will returns results that are partially * ordered by magnitude, but this behavior should not be relied upon. *

* * @param index Index of the eigenvalue eigenvector pair. * @return An eigenvalue. */ public Complex64F getEigenvalue( int index ) { return eig.getEigenvalue(index); } /** *

* Used to retrieve real valued eigenvectors. If an eigenvector is associated with a complex eigenvalue * then null is returned instead. *

* * @param index Index of the eigenvalue eigenvector pair. * @return If the associated eigenvalue is real then an eigenvector is returned, null otherwise. */ public T getEigenVector( int index ) { return (T)SimpleMatrix.wrap(eig.getEigenVector(index)); } /** *

* Computes the quality of the computed decomposition. A value close to or less than 1e-15 * is considered to be within machine precision. *

* *

* This function must be called before the original matrix has been modified or else it will * produce meaningless results. *

* * @return Quality of the decomposition. */ public double quality() { return DecompositionFactory.quality(mat,eig); } /** * Returns the underlying decomposition that this is a wrapper around. * * @return EigenDecomposition */ public EigenDecomposition getEVD() { return eig; } /** * Returns the index of the eigenvalue which has the largest magnitude. * * @return index of the largest magnitude eigen value. */ public int getIndexMax() { int indexMax = 0; double max = getEigenvalue(0).getMagnitude2(); final int N = getNumberOfEigenvalues(); for( int i = 1; i < N; i++ ) { double m = getEigenvalue(i).getMagnitude2(); if( m > max ) { max = m; indexMax = i; } } return indexMax; } /** * Returns the index of the eigenvalue which has the smallest magnitude. * * @return index of the smallest magnitude eigen value. */ public int getIndexMin() { int indexMin = 0; double min = getEigenvalue(0).getMagnitude2(); final int N = getNumberOfEigenvalues(); for( int i = 1; i < N; i++ ) { double m = getEigenvalue(i).getMagnitude2(); if( m < min ) { min = m; indexMin = i; } } return indexMin; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy