All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.dense.decomposition.qr.QRDecompositionHouseholder Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2011, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * EJML is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * EJML is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EJML.  If not, see .
 */

package org.ejml.alg.dense.decomposition.qr;

import org.ejml.alg.dense.decomposition.QRDecomposition;
import org.ejml.data.DenseMatrix64F;
import org.ejml.ops.CommonOps;


/**
 * 

* This variation of QR decomposition uses reflections to compute the Q matrix. * Each reflection uses a householder operations, hence its name. To provide a meaningful solution * the original matrix must have full rank. This is intended for processing of small to medium matrices. *

*

* Both Q and R are stored in the same m by n matrix. Q is not stored directly, instead the u from * Qk=(I-γ*u*uT) is stored. Decomposition requires about 2n*m2-2m2/3 flops. *

* *

* See the QR reflections algorithm described in:
* David S. Watkins, "Fundamentals of Matrix Computations" 2nd Edition, 2002 *

* *

* For the most part this is a straight forward implementation. To improve performance on large matrices a column is writen to an array and the order * of some of the loops has been changed. This will degrade performance noticeably on small matrices. Since * it is unlikely that the QR decomposition would be a bottle neck when small matrices are involved only * one implementation is provided. *

* * @author Peter Abeles */ public class QRDecompositionHouseholder implements QRDecomposition { /** * Where the Q and R matrices are stored. R is stored in the * upper triangular portion and Q on the lower bit. Lower columns * are where u is stored. Q_k = (I - gamma_k*u_k*u_k^T). */ protected DenseMatrix64F QR; // used internally to store temporary data protected double u[],v[]; // dimension of the decomposed matrices protected int numCols; // this is 'n' protected int numRows; // this is 'm' protected int minLength; protected double dataQR[]; // the computed gamma for Q_k matrix protected double gammas[]; // local variables protected double gamma; protected double tau; // did it encounter an error? protected boolean error; public void setExpectedMaxSize( int numRows , int numCols ) { error = false; this.numCols = numCols; this.numRows = numRows; minLength = Math.min(numRows,numCols); int maxLength = Math.max(numRows,numCols); if( QR == null ) { QR = new DenseMatrix64F(numRows,numCols); u = new double[ maxLength ]; v = new double[ maxLength ]; gammas = new double[ minLength ]; } else { QR.reshape(numRows,numCols,false); } dataQR = QR.data; if( u.length < maxLength ) { u = new double[ maxLength ]; v = new double[ maxLength ]; } if( gammas.length < minLength ) { gammas = new double[ minLength ]; } } /** * Returns a single matrix which contains the combined values of Q and R. This * is possible since Q is symmetric and R is upper triangular. * * @return The combined Q R matrix. */ public DenseMatrix64F getQR() { return QR; } /** * Computes the Q matrix from the imformation stored in the QR matrix. This * operation requires about 4(m2n-mn2+n3/3) flops. * * @param Q The orthogonal Q matrix. */ @Override public DenseMatrix64F getQ( DenseMatrix64F Q , boolean compact ) { if( compact ) { if( Q == null ) { Q = CommonOps.identity(numRows,minLength); } else { if( Q.numRows != numRows || Q.numCols != minLength ) { throw new IllegalArgumentException("Unexpected matrix dimension."); } else { CommonOps.setIdentity(Q); } } } else { if( Q == null ) { Q = CommonOps.identity(numRows); } else { if( Q.numRows != numRows || Q.numCols != numRows ) { throw new IllegalArgumentException("Unexpected matrix dimension."); } else { CommonOps.setIdentity(Q); } } } for( int j = minLength-1; j >= 0; j-- ) { u[j] = 1; for( int i = j+1; i < numRows; i++ ) { u[i] = QR.get(i,j); } QrHelperFunctions.rank1UpdateMultR(Q,u,gammas[j],j,j,numRows,v); } return Q; } /** * Returns an upper triangular matrix which is the R in the QR decomposition. * * @param R An upper triangular matrix. * @param compact */ @Override public DenseMatrix64F getR(DenseMatrix64F R, boolean compact) { if( R == null ) { if( compact ) { R = new DenseMatrix64F(minLength,numCols); } else R = new DenseMatrix64F(numRows,numCols); } else { if( compact ) { if( R.numCols != numCols || R.numRows != minLength ) throw new IllegalArgumentException("Unexpected dimensions"); } else { if( R.numCols != numCols || R.numRows != numRows ) throw new IllegalArgumentException("Unexpected dimensions"); } for( int i = 0; i < R.numRows; i++ ) { int min = Math.min(i,R.numCols); for( int j = 0; j < min; j++ ) { R.set(i,j,0); } } } for( int i = 0; i < minLength; i++ ) { for( int j = i; j < numCols; j++ ) { double val = QR.get(i,j); R.set(i,j,val); } } return R; } /** *

* In order to decompose the matrix 'A' it must have full rank. 'A' is a 'm' by 'n' matrix. * It requires about 2n*m2-2m2/3 flops. *

* *

* The matrix provided here can be of different * dimension than the one specified in the constructor. It just has to be smaller than or equal * to it. *

*/ @Override public boolean decompose( DenseMatrix64F A ) { commonSetup(A); for( int j = 0; j < minLength; j++ ) { householder(j); updateA(j); } return !error; } @Override public boolean inputModified() { return false; } /** *

* Computes the householder vector "u" for the first column of submatrix j. Note this is * a specialized householder for this problem. There is some protection against * overflow and underflow. *

*

* Q = I - γuuT *

*

* This function finds the values of 'u' and 'γ'. *

* * @param j Which submatrix to work off of. */ protected void householder( int j ) { // find the element with the largest absolute value in the column and make a copy int index = j+j*numCols; double max = 0; for( int i = j; i < numRows; i++ ) { double d = u[i] = dataQR[index]; // absolute value of d if( d < 0 ) d = -d; if( max < d ) { max = d; } index += numCols; } if( max == 0.0 ) { gamma = 0; error = true; } else { // compute the norm2 of the matrix, with each element // normalized by the max value to avoid overflow problems tau = 0; for( int i = j; i < numRows; i++ ) { u[i] /= max; double d = u[i]; tau += d*d; } tau = Math.sqrt(tau); if( u[j] < 0 ) tau = -tau; double u_0 = u[j] + tau; gamma = u_0/tau; for( int i = j+1; i < numRows; i++ ) { u[i] /= u_0; } u[j] = 1; tau *= max; } gammas[j] = gamma; } /** *

* Takes the results from the householder computation and updates the 'A' matrix.
*
* A = (I - γ*u*uT)A *

* * @param w The submatrix. */ protected void updateA( int w ) { // much of the code below is equivalent to the rank1Update function // however, since τ has already been computed there is no need to // recompute it, saving a few multiplication operations // for( int i = w+1; i < numCols; i++ ) { // double val = 0; // // for( int k = w; k < numRows; k++ ) { // val += u[k]*dataQR[k*numCols +i]; // } // v[i] = gamma*val; // } // This is functionally the same as the above code but the order has been changed // to avoid jumping the cpu cache for( int i = w+1; i < numCols; i++ ) { v[i] = u[w]*dataQR[w*numCols +i]; } for( int k = w+1; k < numRows; k++ ) { int indexQR = k*numCols+w+1; for( int i = w+1; i < numCols; i++ ) { // v[i] += u[k]*dataQR[k*numCols +i]; v[i] += u[k]*dataQR[indexQR++]; } } for( int i = w+1; i < numCols; i++ ) { v[i] *= gamma; } // end of reordered code for( int i = w; i < numRows; i++ ) { double valU = u[i]; int indexQR = i*numCols+w+1; for( int j = w+1; j < numCols; j++ ) { // dataQR[i*numCols+j] -= valU*v[j]; dataQR[indexQR++] -= valU*v[j]; } } if( w < numCols ) { dataQR[w+w*numCols] = -tau; } // save the Q matrix in the lower portion of QR for( int i = w+1; i < numRows; i++ ) { dataQR[w+i*numCols] = u[i]; } } /** * This function performs sanity check on the input for decompose and sets up the QR matrix. * * @param A */ protected void commonSetup(DenseMatrix64F A) { setExpectedMaxSize(A.numRows,A.numCols); QR.set(A); } public double[] getGammas() { return gammas; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy