org.ejml.alg.dense.linsol.lu.LinearSolverLu Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml Show documentation
Show all versions of ejml Show documentation
A fast and easy to use dense matrix linear algebra library written in Java.
/*
* Copyright (c) 2009-2011, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* EJML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* EJML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EJML. If not, see .
*/
package org.ejml.alg.dense.linsol.lu;
import org.ejml.alg.dense.decomposition.lu.LUDecompositionBase;
import org.ejml.data.DenseMatrix64F;
/**
* For each column in the B matrix it makes a copy, which is then solved for and
* writen into X. By making a copy of the column cpu cache issues are reduced.
*
* @author Peter Abeles
*/
public class LinearSolverLu extends LinearSolverLuBase {
boolean doImprove = false;
public LinearSolverLu( LUDecompositionBase decomp ) {
super(decomp);
}
public LinearSolverLu( LUDecompositionBase decomp , boolean doImprove ) {
super(decomp);
this.doImprove = doImprove;
}
@Override
public void solve(DenseMatrix64F b, DenseMatrix64F x) {
if( b.numCols != x.numCols && b.numRows != numCols && x.numRows != numCols) {
throw new IllegalArgumentException("Unexpected matrix size");
}
int numCols = b.numCols;
double dataB[] = b.data;
double dataX[] = x.data;
double []vv = decomp._getVV();
// for( int j = 0; j < numCols; j++ ) {
// for( int i = 0; i < this.numCols; i++ ) vv[i] = dataB[i*numCols+j];
// decomp._solveVectorInternal(vv);
// for( int i = 0; i < this.numCols; i++ ) dataX[i*numCols+j] = vv[i];
// }
for( int j = 0; j < numCols; j++ ) {
int index = j;
for( int i = 0; i < this.numCols; i++ , index += numCols ) vv[i] = dataB[index];
decomp._solveVectorInternal(vv);
index = j;
for( int i = 0; i < this.numCols; i++ , index += numCols ) dataX[index] = vv[i];
}
if( doImprove ) {
improveSol(b,x);
}
}
}