org.ejml.alg.dense.decomposition.BaseDecompositionBlock64 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml Show documentation
Show all versions of ejml Show documentation
A fast and easy to use dense matrix linear algebra library written in Java.
/*
* Copyright (c) 2009-2011, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* EJML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* EJML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EJML. If not, see .
*/
package org.ejml.alg.dense.decomposition;
import org.ejml.alg.block.BlockMatrixOps;
import org.ejml.data.BlockMatrix64F;
import org.ejml.data.DenseMatrix64F;
/**
* Generic interface for wrapping a {@link BlockMatrix64F} decomposition for
* processing of {@link org.ejml.data.DenseMatrix64F}.
*
* @author Peter Abeles
*/
public class BaseDecompositionBlock64 implements DecompositionInterface {
protected DecompositionInterface alg;
protected double[]tmp;
protected BlockMatrix64F Ablock = new BlockMatrix64F();
protected int blockLength;
public BaseDecompositionBlock64(DecompositionInterface alg,
int blockLength) {
this.alg = alg;
this.blockLength = blockLength;
}
@Override
public boolean decompose(DenseMatrix64F A) {
Ablock.numRows = A.numRows;
Ablock.numCols = A.numCols;
Ablock.blockLength = blockLength;
Ablock.data = A.data;
int tmpLength = Math.min( Ablock.blockLength , A.numRows ) * A.numCols;
if( tmp == null || tmp.length < tmpLength )
tmp = new double[ tmpLength ];
// doing an in-place convert is much more memory efficient at the cost of a little
// but of CPU
BlockMatrixOps.convertRowToBlock(A.numRows,A.numCols,Ablock.blockLength,A.data,tmp);
boolean ret = alg.decompose(Ablock);
// convert it back to the normal format if it wouldn't have been modified
if( !alg.inputModified() ) {
BlockMatrixOps.convertBlockToRow(A.numRows,A.numCols,Ablock.blockLength,A.data,tmp);
}
return ret;
}
public void convertBlockToRow(int numRows , int numCols , int blockLength ,
double[] data) {
int tmpLength = Math.min( blockLength , numRows ) * numCols;
if( tmp == null || tmp.length < tmpLength )
tmp = new double[ tmpLength ];
BlockMatrixOps.convertBlockToRow(numRows,numCols,Ablock.blockLength,data,tmp);
}
@Override
public boolean inputModified() {
return alg.inputModified();
}
}