All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.ops.NormOps Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * EJML is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * EJML is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EJML.  If not, see .
 */

package org.ejml.ops;

import org.ejml.UtilEjml;
import org.ejml.data.D1Matrix64F;
import org.ejml.data.DenseMatrix64F;
import org.ejml.data.RowD1Matrix64F;
import org.ejml.factory.DecompositionFactory;
import org.ejml.factory.SingularValueDecomposition;


/**
 * 

* Norms are a measure of the size of a vector or a matrix. One typical application is in error analysis. *

*

* Vector norms have the following properties: *

    *
  1. ||x|| > 0 if x ≠ 0 and ||0|| = 0
  2. *
  3. ||αx|| = |α| ||x||
  4. *
  5. ||x+y|| ≤ ||x|| + ||y||
  6. *
*

* *

* Matrix norms have the following properties: *

    *
  1. ||A|| > 0 if A ≠ 0 where A ∈ ℜ m × n
  2. *
  3. || α A || = |α| ||A|| where A ∈ ℜ m × n
  4. *
  5. ||A+B|| ≤ ||A|| + ||B|| where A and B are ∈ ℜ m × n
  6. *
  7. ||AB|| ≤ ||A|| ||B|| where A and B are ∈ ℜ m × m
  8. *
* Note that the last item in the list only applies to square matrices. *

* *

* Matrix norms can be induced from vector norms as is shown below:
*
* ||A||M = maxx≠0||Ax||v/||x||v
*
* where ||.||M is the induced matrix norm for the vector norm ||.||v. *

* *

* By default implementations that try to mitigate overflow/underflow are used. If the word fast is * found before a function's name that means it does not mitigate those issues, but runs a bit faster. *

* * @author Peter Abeles */ public class NormOps { /** * Normalizes the matrix such that the Frobenius norm is equal to one. * * @param A The matrix that is to be normalized. */ public static void normalizeF( DenseMatrix64F A ) { double val = normF(A); if( val == 0 ) return; int size = A.getNumElements(); for( int i = 0; i < size; i++) { A.div(i , val); } } /** *

* The condition number of a matrix is used to measure the sensitivity of the linear * system Ax=b. A value near one indicates that it is a well conditioned matrix.
*
* κp = ||A||p||A-1||p *

*

* If the matrix is not square then the condition of either ATA or AAT is computed. *

* @param A The matrix. * @param p p-norm * @return The condition number. */ public static double conditionP( DenseMatrix64F A , double p ) { if( p == 2 ) { return conditionP2(A); } else if( A.numRows == A.numCols ){ // square matrices are the typical case DenseMatrix64F A_inv = new DenseMatrix64F(A.numRows,A.numCols); if( !CommonOps.invert(A,A_inv) ) throw new IllegalArgumentException("A can't be inverted."); return normP(A,p) * normP(A_inv,p); } else { DenseMatrix64F pinv = new DenseMatrix64F(A.numCols,A.numRows); CommonOps.pinv(A,pinv); return normP(A,p) * normP(pinv,p); } } /** *

* The condition p = 2 number of a matrix is used to measure the sensitivity of the linear * system Ax=b. A value near one indicates that it is a well conditioned matrix.
*
* κ2 = ||A||2||A-1||2 *

*

* This is also known as the spectral condition number. *

* * @param A The matrix. * @return The condition number. */ public static double conditionP2( DenseMatrix64F A ) { SingularValueDecomposition svd = DecompositionFactory.svd(A.numRows,A.numCols,false,false,true); svd.decompose(A); double[] singularValues = svd.getSingularValues(); int n = SingularOps.rank(svd,1e-12); if( n == 0 ) return 0; double smallest = Double.MAX_VALUE; double largest = Double.MIN_VALUE; for( double s : singularValues ) { if( s < smallest ) smallest = s; if( s > largest ) largest = s; } return largest/smallest; } /** *

* This implementation of the Frobenius norm is a straight forward implementation and can * be susceptible for overflow/underflow issues. A more resilient implementation is * {@link #normF}. *

* * @param a The matrix whose norm is computed. Not modified. */ public static double fastNormF( D1Matrix64F a ) { double total = 0; int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { double val = a.get(i); total += val*val; } return Math.sqrt(total); } /** *

* Computes the Frobenius matrix norm:
*
* normF = Sqrt{ ∑i=1:mj=1:n { aij2} } *

*

* This is equivalent to the element wise p=2 norm. See {@link #fastNormF} for another implementation * that is faster, but more prone to underflow/overflow errors. *

* * @param a The matrix whose norm is computed. Not modified. * @return The norm's value. */ public static double normF( D1Matrix64F a ) { double total = 0; double scale = CommonOps.elementMaxAbs(a); if( scale == 0.0 ) return 0.0; final int size = a.getNumElements(); for( int i = 0; i < size; i++ ) { double val = a.get(i)/scale; total += val*val; } return scale*Math.sqrt(total); } /** *

* Element wise p-norm:
*
* norm = {∑i=1:mj=1:n { |aij|p}}1/p *

* *

* This is not the same as the induced p-norm used on matrices, but is the same as the vector p-norm. *

* * @param A Matrix. Not modified. * @param p p value. * @return The norm's value. */ public static double elementP( RowD1Matrix64F A , double p ) { if( p == 1 ) { return CommonOps.elementSumAbs(A); } if( p == 2 ) { return normF(A); } else { double max = CommonOps.elementMaxAbs(A); if( max == 0.0 ) return 0.0; double total = 0; int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { double a = A.get(i)/max; total += Math.pow(Math.abs(a),p); } return max*Math.pow(total,1.0/p); } } /** * Same as {@link #elementP} but runs faster by not mitigating overflow/underflow related problems. * * @param A Matrix. Not modified. * @param p p value. * @return The norm's value. */ public static double fastElementP( D1Matrix64F A , double p ) { if( p == 2 ) { return fastNormF(A); } else { double total = 0; int size = A.getNumElements(); for( int i = 0; i < size; i++ ) { double a = A.get(i); total += Math.pow(Math.abs(a),p); } return Math.pow(total,1.0/p); } } /** * Computes either the vector p-norm or the induced matrix p-norm depending on A * being a vector or a matrix respectively. * * @param A Vector or matrix whose norm is to be computed. * @param p The p value of the p-norm. * @return The computed norm. */ public static double normP( DenseMatrix64F A , double p ) { if( p == 1 ) { return normP1(A); } else if( p == 2 ) { return normP2(A); } else if( Double.isInfinite(p)) { return normPInf(A); } if( MatrixFeatures.isVector(A) ) { return elementP(A,p); } else { throw new IllegalArgumentException("Doesn't support induced norms yet."); } } /** * An unsafe but faster version of {@link #normP} that calls routines which are faster * but more prone to overflow/underflow problems. * * @param A Vector or matrix whose norm is to be computed. * @param p The p value of the p-norm. * @return The computed norm. */ public static double fastNormP( DenseMatrix64F A , double p ) { if( p == 1 ) { return normP1(A); } else if( p == 2 ) { return fastNormP2(A); } else if( Double.isInfinite(p)) { return normPInf(A); } if( MatrixFeatures.isVector(A) ) { return fastElementP(A,p); } else { throw new IllegalArgumentException("Doesn't support induced norms yet."); } } /** * Computes the p=1 norm. If A is a matrix then the induced norm is computed. * * @param A Matrix or vector. * @return The norm. */ public static double normP1( DenseMatrix64F A ) { if( MatrixFeatures.isVector(A)) { return CommonOps.elementSumAbs(A); } else { return inducedP1(A); } } /** * Computes the p=2 norm. If A is a matrix then the induced norm is computed. * * @param A Matrix or vector. * @return The norm. */ public static double normP2( DenseMatrix64F A ) { if( MatrixFeatures.isVector(A)) { return normF(A); } else { return inducedP2(A); } } /** * Computes the p=2 norm. If A is a matrix then the induced norm is computed. This * implementation is faster, but more prone to buffer overflow or underflow problems. * * @param A Matrix or vector. * @return The norm. */ public static double fastNormP2( DenseMatrix64F A ) { if( MatrixFeatures.isVector(A)) { return fastNormF(A); } else { return inducedP2(A); } } /** * Computes the p=∞ norm. If A is a matrix then the induced norm is computed. * * @param A Matrix or vector. * @return The norm. */ public static double normPInf( DenseMatrix64F A ) { if( MatrixFeatures.isVector(A)) { return CommonOps.elementMaxAbs(A); } else { return inducedPInf(A); } } /** *

* Computes the induced p = 1 matrix norm.
*
* ||A||1= max(j=1 to n; sum(i=1 to m; |aij|)) *

* * @param A Matrix. Not modified. * @return The norm. */ public static double inducedP1( DenseMatrix64F A ) { double max = 0; int m = A.numRows; int n = A.numCols; for( int j = 0; j < n; j++ ) { double total = 0; for( int i = 0; i < m; i++ ) { total += Math.abs(A.get(i,j)); } if( total > max ) { max = total; } } return max; } /** *

* Computes the induced p = 2 matrix norm, which is the largest singular value. *

* * @param A Matrix. Not modified. * @return The norm. */ public static double inducedP2( DenseMatrix64F A ) { SingularValueDecomposition svd = DecompositionFactory.svd(A.numRows,A.numCols,false,false,true); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); double[] singularValues = svd.getSingularValues(); // the largest singular value is the induced p2 norm return UtilEjml.max(singularValues,0,singularValues.length); } /** *

* Induced matrix p = infinity norm.
*
* ||A|| = max(i=1 to m; sum(j=1 to n; |aij|)) *

* * @param A A matrix. * @return the norm. */ public static double inducedPInf( DenseMatrix64F A ) { double max = 0; int m = A.numRows; int n = A.numCols; for( int i = 0; i < m; i++ ) { double total = 0; for( int j = 0; j < n; j++ ) { total += Math.abs(A.get(i,j)); } if( total > max ) { max = total; } } return max; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy