All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.block.decomposition.chol.BlockCholeskyOuterForm Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * EJML is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * EJML is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EJML.  If not, see .
 */

package org.ejml.alg.block.decomposition.chol;

import org.ejml.alg.block.BlockInnerRankUpdate;
import org.ejml.alg.block.BlockMatrixOps;
import org.ejml.alg.block.BlockTriangularSolver;
import org.ejml.data.BlockMatrix64F;
import org.ejml.data.D1Submatrix64F;
import org.ejml.factory.CholeskyDecomposition;


/**
 * 

* Block Cholesky using outer product form. The original matrix is stored and modified. *

* *

* Based on the description provided in "Fundamentals of Matrix Computations" 2nd Ed. by David S. Watkins. *

* * @author Peter Abeles */ public class BlockCholeskyOuterForm implements CholeskyDecomposition { // if it should compute an upper or lower triangular matrix private boolean lower = false; // The decomposed matrix. private BlockMatrix64F T; /** * Creates a new BlockCholeskyOuterForm * * @param lower Should it decompose it into a lower triangular matrix or not. */ public BlockCholeskyOuterForm(boolean lower) { this.lower = lower; } /** * Decomposes the provided matrix and stores the result in the same matrix. * * @param A Matrix that is to be decomposed. Modified. * @return If it succeeded or not. */ @Override public boolean decompose(BlockMatrix64F A) { if( A.numCols != A.numRows ) throw new IllegalArgumentException("A must be square"); this.T = A; if( lower ) return decomposeLower(); else return decomposeUpper(); } private boolean decomposeLower() { int blockLength = T.blockLength; D1Submatrix64F subA = new D1Submatrix64F(T); D1Submatrix64F subB = new D1Submatrix64F(T); D1Submatrix64F subC = new D1Submatrix64F(T); for( int i = 0; i < T.numCols; i += blockLength ) { int widthA = Math.min(blockLength, T.numCols-i); subA.col0 = i; subA.col1 = i+widthA; subA.row0 = subA.col0; subA.row1 = subA.col1; subB.col0 = i; subB.col1 = i+widthA; subB.row0 = i+widthA; subB.row1 = T.numRows; subC.col0 = i+widthA; subC.col1 = T.numRows; subC.row0 = i+widthA; subC.row1 = T.numRows; // cholesky on inner block A if( !BlockInnerCholesky.lower(subA)) return false; // on the last block these operations are not needed. if( widthA == blockLength ) { // B = L^-1 B BlockTriangularSolver.solveBlock(blockLength,false,subA,subB,false,true); // C = C - B * B^T BlockInnerRankUpdate.symmRankNMinus_L(blockLength,subC,subB); } } BlockMatrixOps.zeroTriangle(true,T); return true; } private boolean decomposeUpper() { int blockLength = T.blockLength; D1Submatrix64F subA = new D1Submatrix64F(T); D1Submatrix64F subB = new D1Submatrix64F(T); D1Submatrix64F subC = new D1Submatrix64F(T); for( int i = 0; i < T.numCols; i += blockLength ) { int widthA = Math.min(blockLength, T.numCols-i); subA.col0 = i; subA.col1 = i+widthA; subA.row0 = subA.col0; subA.row1 = subA.col1; subB.col0 = i+widthA; subB.col1 = T.numCols; subB.row0 = i; subB.row1 = i+widthA; subC.col0 = i+widthA; subC.col1 = T.numCols; subC.row0 = i+widthA; subC.row1 = T.numCols; // cholesky on inner block A if( !BlockInnerCholesky.upper(subA)) return false; // on the last block these operations are not needed. if( widthA == blockLength ) { // B = U^-1 B BlockTriangularSolver.solveBlock(blockLength,true,subA,subB,true,false); // C = C - B^T * B BlockInnerRankUpdate.symmRankNMinus_U(blockLength,subC,subB); } } BlockMatrixOps.zeroTriangle(false,T); return true; } @Override public boolean isLower() { return lower; } @Override public BlockMatrix64F getT(BlockMatrix64F T) { if( T == null ) return this.T; T.set(this.T); return T; } @Override public boolean inputModified() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy