All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.dense.decomposition.bidiagonal.BidiagonalDecompositionTall Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * EJML is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * EJML is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EJML.  If not, see .
 */

package org.ejml.alg.dense.decomposition.bidiagonal;

import org.ejml.UtilEjml;
import org.ejml.data.DenseMatrix64F;
import org.ejml.factory.DecompositionFactory;
import org.ejml.factory.QRPDecomposition;
import org.ejml.ops.CommonOps;


/**
 * 

* {@link BidiagonalDecomposition} specifically designed for tall matrices. * First step is to perform QR decomposition on the input matrix. Then R is decomposed using * a bidiagonal decomposition. By performing the bidiagonal decomposition on the smaller matrix * computations can be saved if m/n > 5/3 and if U is NOT needed. *

* *

* A = [Q1 Q2][U1 0; 0 I] [B1;0] VT
* U=[Q1*U1 Q2]
* B=[B1;0]
* A = U*B*VT *

* *

* A QRP decomposition is used internally. That decomposition relies an a fixed threshold for selecting singular * values and is known to be less stable than SVD. There is the potential for a degregation of stability * by using BidiagonalDecompositionTall instead of BidiagonalDecomposition. A few simple tests have shown * that loss in stability to be insignificant. *

* *

* See page 404 in "Fundamentals of Matrix Computations", 2nd by David S. Watkins. *

* * * @author Peter Abeles */ // TODO optimize this code public class BidiagonalDecompositionTall implements BidiagonalDecomposition { QRPDecomposition decompQRP = DecompositionFactory.qrp(500, 100); // todo this should be passed in BidiagonalDecomposition decompBi = new BidiagonalDecompositionRow(); DenseMatrix64F B = new DenseMatrix64F(1,1); // number of rows int m; // number of column int n; // min(m,n) int min; @Override public void getDiagonal(double[] diag, double[] off) { diag[0] = B.get(0); for( int i = 1; i < n; i++ ) { diag[i] = B.unsafe_get(i,i); off[i-1] = B.unsafe_get(i-1,i); } } @Override public DenseMatrix64F getB(DenseMatrix64F B, boolean compact) { B = BidiagonalDecompositionRow.handleB(B,compact, m, n,min); B.set(0,0,this.B.get(0,0)); for( int i = 1; i < min; i++ ) { B.set(i,i, this.B.get(i,i)); B.set(i-1,i, this.B.get(i-1,i)); } if( n > m) B.set(min-1,min,this.B.get(min-1,min)); return B; } @Override public DenseMatrix64F getU(DenseMatrix64F U, boolean transpose, boolean compact) { U = BidiagonalDecompositionRow.handleU(U,false,compact, m, n,min); if( compact ) { // U = Q*U1 DenseMatrix64F Q1 = decompQRP.getQ(null,true); DenseMatrix64F U1 = decompBi.getU(null,false,true); CommonOps.mult(Q1,U1,U); } else { // U = [Q1*U1 Q2] DenseMatrix64F Q = decompQRP.getQ(U,false); DenseMatrix64F U1 = decompBi.getU(null,false,true); DenseMatrix64F Q1 = CommonOps.extract(Q,0,Q.numRows,0,min); DenseMatrix64F tmp = new DenseMatrix64F(Q1.numRows,U1.numCols); CommonOps.mult(Q1,U1,tmp); CommonOps.insert(tmp,Q,0,0); } if( transpose ) CommonOps.transpose(U); return U; } @Override public DenseMatrix64F getV(DenseMatrix64F V, boolean transpose, boolean compact) { return decompBi.getV(V,transpose,compact); } @Override public boolean decompose(DenseMatrix64F orig) { decompQRP.setSingularThreshold(CommonOps.elementMaxAbs(orig)* UtilEjml.EPS); if( !decompQRP.decompose(orig) ) { return false; } m = orig.numRows; n = orig.numCols; min = Math.min(m, n); B.reshape(min, n,false); decompQRP.getR(B,true); // apply the column pivots. // TODO this is horribly inefficient DenseMatrix64F result = new DenseMatrix64F(min,n); DenseMatrix64F P = decompQRP.getPivotMatrix(null); CommonOps.multTransB(B, P, result); B.set(result); return decompBi.decompose(B); } @Override public boolean inputModified() { return decompQRP.inputModified(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy