org.ejml.alg.dense.decomposition.hessenberg.TridiagonalDecompositionHouseholder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml Show documentation
Show all versions of ejml Show documentation
A fast and easy to use dense matrix linear algebra library written in Java.
/*
* Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* EJML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* EJML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EJML. If not, see .
*/
package org.ejml.alg.dense.decomposition.hessenberg;
import org.ejml.alg.dense.decomposition.qr.QrHelperFunctions;
import org.ejml.data.DenseMatrix64F;
import org.ejml.ops.CommonOps;
/**
*
* Performs a {@link TridiagonalSimilarDecomposition similar tridiagonal decomposition} on a square symmetric input matrix.
* Householder vectors perform the similar operation and the symmetry is taken advantage
* of for good performance.
*
*
* Finds the decomposition of a matrix in the form of:
*
* A = O*T*OT
*
* where A is a symmetric m by m matrix, O is an orthogonal matrix, and T is a tridiagonal matrix.
*
*
* This implementation is based off of the algorithm described in:
*
* David S. Watkins, "Fundamentals of Matrix Computations," Second Edition. Page 349-355
*
*
* @author Peter Abeles
*/
public class TridiagonalDecompositionHouseholder
implements TridiagonalSimilarDecomposition {
/**
* Only the upper right triangle is used. The Tridiagonal portion stores
* the tridiagonal matrix. The rows store householder vectors.
*/
private DenseMatrix64F QT;
// The size of the matrix
private int N;
// temporary storage
private double w[];
// gammas for the householder operations
private double gammas[];
// temporary storage
private double b[];
public TridiagonalDecompositionHouseholder() {
N = 1;
w = new double[N];
b = new double[N];
gammas = new double[N];
}
/**
* Returns the internal matrix where the decomposed results are stored.
* @return
*/
public DenseMatrix64F getQT() {
return QT;
}
@Override
public void getDiagonal(double[] diag, double[] off) {
for( int i = 0; i < N; i++ ) {
diag[i] = QT.data[i*N+i];
if( i+1 < N ) {
off[i] = QT.data[i*N+i+1];
}
}
}
/**
* Extracts the tridiagonal matrix found in the decomposition.
*
* @param T If not null then the results will be stored here. Otherwise a new matrix will be created.
* @return The extracted T matrix.
*/
@Override
public DenseMatrix64F getT( DenseMatrix64F T ) {
if( T == null ) {
T = new DenseMatrix64F(N,N);
} else if( N != T.numRows || N != T.numCols )
throw new IllegalArgumentException("The provided H must have the same dimensions as the decomposed matrix.");
else
T.zero();
T.data[0] = QT.data[0];
for( int i = 1; i < N; i++ ) {
T.set(i,i, QT.get(i,i));
double a = QT.get(i-1,i);
T.set(i-1,i,a);
T.set(i,i-1,a);
}
if( N > 1 ) {
T.data[(N-1)*N+N-1] = QT.data[(N-1)*N+N-1];
T.data[(N-1)*N+N-2] = QT.data[(N-2)*N+N-1];
}
return T;
}
/**
* An orthogonal matrix that has the following property: T = QTAQ
*
* @param Q If not null then the results will be stored here. Otherwise a new matrix will be created.
* @return The extracted Q matrix.
*/
@Override
public DenseMatrix64F getQ( DenseMatrix64F Q , boolean transposed ) {
if( Q == null ) {
Q = CommonOps.identity(N);
} else if( N != Q.numRows || N != Q.numCols )
throw new IllegalArgumentException("The provided H must have the same dimensions as the decomposed matrix.");
else
CommonOps.setIdentity(Q);
for( int i = 0; i < N; i++ ) w[i] = 0;
if( transposed ) {
for( int j = N-2; j >= 0; j-- ) {
w[j+1] = 1;
for( int i = j+2; i < N; i++ ) {
w[i] = QT.data[j*N+i];
}
QrHelperFunctions.rank1UpdateMultL(Q,w,gammas[j+1],j+1,j+1,N);
}
} else {
for( int j = N-2; j >= 0; j-- ) {
w[j+1] = 1;
for( int i = j+2; i < N; i++ ) {
w[i] = QT.get(j,i);
}
QrHelperFunctions.rank1UpdateMultR(Q,w,gammas[j+1],j+1,j+1,N,b);
}
}
return Q;
}
/**
* Decomposes the provided symmetric matrix.
*
* @param A Symmetric matrix that is going to be decomposed. Not modified.
*/
@Override
public boolean decompose( DenseMatrix64F A ) {
init(A);
for( int k = 1; k < N; k++ ) {
similarTransform(k);
}
return true;
}
/**
* Computes and performs the similar a transform for submatrix k.
*/
private void similarTransform( int k) {
double t[] = QT.data;
// find the largest value in this column
// this is used to normalize the column and mitigate overflow/underflow
double max = 0;
int rowU = (k-1)*N;
for( int i = k; i < N; i++ ) {
double val = Math.abs(t[rowU+i]);
if( val > max )
max = val;
}
if( max > 0 ) {
// -------- set up the reflector Q_k
double tau = QrHelperFunctions.computeTauAndDivide(k,N,t,rowU,max);
// write the reflector into the lower left column of the matrix
double nu = t[rowU+k] + tau;
QrHelperFunctions.divideElements(k+1,N,t,rowU,nu);
t[rowU+k] = 1.0;
double gamma = nu/tau;
gammas[k] = gamma;
// ---------- Specialized householder that takes advantage of the symmetry
householderSymmetric(k,gamma);
// since the first element in the householder vector is known to be 1
// store the full upper hessenberg
t[rowU+k] = -tau*max;
} else {
gammas[k] = 0;
}
}
/**
* Performs the householder operations on left and right and side of the matrix. QTAQ
* @param row Specifies the submatrix.
*
* @param gamma The gamma for the householder operation
*/
public void householderSymmetric( int row , double gamma )
{
int startU = (row-1)*N;
// compute v = -gamma*A*u
for( int i = row; i < N; i++ ) {
double total = 0;
// the lower triangle is not written to so it needs to traverse upwards
// to get the information. Reduces the number of matrix writes need
// improving large matrix performance
for( int j = row; j < i; j++ ) {
total += QT.data[j*N+i]*QT.data[startU+j];
}
for( int j = i; j < N; j++ ) {
total += QT.data[i*N+j]*QT.data[startU+j];
}
w[i] = -gamma*total;
}
// alpha = -0.5*gamma*u^T*v
double alpha = 0;
for( int i = row; i < N; i++ ) {
alpha += QT.data[startU+i]*w[i];
}
alpha *= -0.5*gamma;
// w = v + alpha*u
for( int i = row; i < N; i++ ) {
w[i] += alpha*QT.data[startU+i];
}
// A = A + w*u^T + u*w^T
for( int i = row; i < N; i++ ) {
double ww = w[i];
double uu = QT.data[startU+i];
int rowA = i*N;
for( int j = i; j < N; j++ ) {
// only write to the upper portion of the matrix
// this reduces the number of cache misses
QT.data[rowA+j] += ww*QT.data[startU+j] + w[j]*uu;
}
}
}
/**
* If needed declares and sets up internal data structures.
*
* @param A Matrix being decomposed.
*/
public void init( DenseMatrix64F A ) {
if( A.numRows != A.numCols)
throw new IllegalArgumentException("Must be square");
if( A.numCols != N ) {
N = A.numCols;
if( w.length < N ) {
w = new double[ N ];
gammas = new double[N];
b = new double[N];
}
}
QT = A;
}
@Override
public boolean inputModified() {
return true;
}
}