All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.dense.decomposition.qr.QrHelperFunctions Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * EJML is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * EJML is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with EJML.  If not, see .
 */

package org.ejml.alg.dense.decomposition.qr;

import org.ejml.data.DenseMatrix64F;


/**
 * 

* Contains different functions that are useful for computing the QR decomposition of a matrix. *

* *

* Two different families of functions are provided for help in computing reflectors. Internally * both of these functions switch between normalization by division or multiplication. Multiplication * is most often significantly faster than division (2 or 3 times) but produces less accurate results * on very small numbers. It checks to see if round off error is significant and decides which * one it should do. *

* *

* Tests were done using the stability benchmark in jmatbench and there doesn't seem to be * any advantage to always dividing by the max instead of checking and deciding. The most * noticeable difference between the two methods is with very small numbers. *

* * @author Peter Abeles */ public class QrHelperFunctions { public static double findMax( double[] u, int startU , int length ) { double max = -1; int index = startU; int stopIndex = startU + length; for( ; index < stopIndex; index++ ) { double val = u[index]; val = (val < 0.0D) ? -val : val; if( val > max ) max = val; } return max; } public static void divideElements(final int j, final int numRows , final double[] u, final double u_0 ) { // double div_u = 1.0/u_0; // // if( Double.isInfinite(div_u)) { for( int i = j; i < numRows; i++ ) { u[i] /= u_0; } // } else { // for( int i = j; i < numRows; i++ ) { // u[i] *= div_u; // } // } } public static void divideElements(int j, int numRows , double[] u, int startU , double u_0 ) { // double div_u = 1.0/u_0; // // if( Double.isInfinite(div_u)) { for( int i = j; i < numRows; i++ ) { u[i+startU] /= u_0; } // } else { // for( int i = j; i < numRows; i++ ) { // u[i+startU] *= div_u; // } // } } public static void divideElements_Brow(int j, int numRows , double[] u, double b[] , int startB , double u_0 ) { // double div_u = 1.0/u_0; // // if( Double.isInfinite(div_u)) { for( int i = j; i < numRows; i++ ) { u[i] = b[i+startB] /= u_0; } // } else { // for( int i = j; i < numRows; i++ ) { // u[i] = b[i+startB] *= div_u; // } // } } public static void divideElements_Bcol(int j, int numRows , int numCols , double[] u, double b[] , int startB , double u_0 ) { // double div_u = 1.0/u_0; // // if( Double.isInfinite(div_u)) { int indexB = j*numCols+startB; for( int i = j; i < numRows; i++ , indexB += numCols ) { b[indexB] = u[i] /= u_0; } // } else { // int indexB = j*numCols+startB; // for( int i = j; i < numRows; i++ , indexB += numCols ) { // b[indexB] = u[i] *= div_u; // } // } } public static double computeTauAndDivide(int j, int numRows , double[] u, int startU , double max) { // compute the norm2 of the matrix, with each element // normalized by the max value to avoid overflow problems double tau = 0; // double div_max = 1.0/max; // if( Double.isInfinite(div_max)) { // more accurate for( int i = j; i < numRows; i++ ) { double d = u[startU+i] /= max; tau += d*d; } // } else { // // faster // for( int i = j; i < numRows; i++ ) { // double d = u[startU+i] *= div_max; // tau += d*d; // } // } tau = Math.sqrt(tau); if( u[startU+j] < 0 ) tau = -tau; return tau; } /** * Normalizes elements in 'u' by dividing by max and computes the norm2 of the normalized * array u. Adjust the sign of the returned value depending on the size of the first * element in 'u'. Normalization is done to avoid overflow. * *
     * for i=j:numRows
     *   u[i] = u[i] / max
     *   tau = tau + u[i]*u[i]
     * end
     * tau = sqrt(tau)
     * if( u[j] < 0 )
     *    tau = -tau;
     * 
* * @param j Element in 'u' that it starts at. * @param numRows Element in 'u' that it stops at. * @param u Array * @param max Max value in 'u' that is used to normalize it. * @return norm2 of 'u' */ public static double computeTauAndDivide(final int j, final int numRows , final double[] u , final double max) { double tau = 0; // double div_max = 1.0/max; // if( Double.isInfinite(div_max)) { for( int i = j; i < numRows; i++ ) { double d = u[i] /= max; tau += d*d; } // } else { // for( int i = j; i < numRows; i++ ) { // double d = u[i] *= div_max; // tau += d*d; // } // } tau = Math.sqrt(tau); if( u[j] < 0 ) tau = -tau; return tau; } /** *

* Performs a rank-1 update operation on the submatrix specified by w with the multiply on the right.
*
* A = (I - γ*u*uT)*A
*

*

* The order that matrix multiplies are performed has been carefully selected * to minimize the number of operations. *

* *

* Before this can become a truly generic operation the submatrix specification needs * to be made more generic. *

*/ public static void rank1UpdateMultR( DenseMatrix64F A , double u[] , double gamma , int colA0, int w0, int w1 , double _temp[] ) { // for( int i = colA0; i < A.numCols; i++ ) { // double val = 0; // // for( int k = w0; k < w1; k++ ) { // val += u[k]*A.data[k*A.numCols +i]; // } // _temp[i] = gamma*val; // } // reordered to reduce cpu cache issues for( int i = colA0; i < A.numCols; i++ ) { _temp[i] = u[w0]*A.data[w0 *A.numCols +i]; } for( int k = w0+1; k < w1; k++ ) { int indexA = k*A.numCols + colA0; double valU = u[k]; for( int i = colA0; i < A.numCols; i++ ) { _temp[i] += valU*A.data[indexA++]; } } for( int i = colA0; i < A.numCols; i++ ) { _temp[i] *= gamma; } // end of reorder for( int i = w0; i < w1; i++ ) { double valU = u[i]; int indexA = i*A.numCols + colA0; for( int j = colA0; j < A.numCols; j++ ) { A.data[indexA++] -= valU*_temp[j]; } } } public static void rank1UpdateMultR(DenseMatrix64F A, double u[], int offsetU, double gamma, int colA0, int w0, int w1, double _temp[]) { // for( int i = colA0; i < A.numCols; i++ ) { // double val = 0; // // for( int k = w0; k < w1; k++ ) { // val += u[k+offsetU]*A.data[k*A.numCols +i]; // } // _temp[i] = gamma*val; // } // reordered to reduce cpu cache issues for( int i = colA0; i < A.numCols; i++ ) { _temp[i] = u[w0+offsetU]*A.data[w0 *A.numCols +i]; } for( int k = w0+1; k < w1; k++ ) { int indexA = k*A.numCols + colA0; double valU = u[k+offsetU]; for( int i = colA0; i < A.numCols; i++ ) { _temp[i] += valU*A.data[indexA++]; } } for( int i = colA0; i < A.numCols; i++ ) { _temp[i] *= gamma; } // end of reorder for( int i = w0; i < w1; i++ ) { double valU = u[i+offsetU]; int indexA = i*A.numCols + colA0; for( int j = colA0; j < A.numCols; j++ ) { A.data[indexA++] -= valU*_temp[j]; } } } /** *

* Performs a rank-1 update operation on the submatrix specified by w with the multiply on the left.
*
* A = A(I - γ*u*uT)
*

*

* The order that matrix multiplies are performed has been carefully selected * to minimize the number of operations. *

* *

* Before this can become a truly generic operation the submatrix specification needs * to be made more generic. *

*/ public static void rank1UpdateMultL( DenseMatrix64F A , double u[] , double gamma , int colA0, int w0 , int w1 ) { for( int i = colA0; i < A.numRows; i++ ) { int startIndex = i*A.numCols+w0; double sum = 0; int rowIndex = startIndex; for( int j = w0; j < w1; j++ ) { sum += A.data[rowIndex++]*u[j]; } sum = -gamma*sum; rowIndex = startIndex; for( int j = w0; j < w1; j++ ) { A.data[rowIndex++] += sum*u[j]; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy