org.ejml.alg.dense.misc.DeterminantFromMinor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml Show documentation
Show all versions of ejml Show documentation
A fast and easy to use dense matrix linear algebra library written in Java.
/*
* Copyright (c) 2009-2012, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* EJML is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* EJML is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with EJML. If not, see .
*/
package org.ejml.alg.dense.misc;
import org.ejml.data.DenseMatrix64F;
import org.ejml.data.RowD1Matrix64F;
/**
*
* Computes the determinant of a matrix using Laplace expansion. This is done
* using minor matrices as is shown below:
*
* |A| = Sum{ i=1:k ; aij Cij }
*
* Cij = (-1)i+j Mij
*
* Where M_ij is the minor of matrix A formed by eliminating row i and column j from A.
*
*
*
* This is significantly more computationally expensive than using LU decomposition, but
* its computation has the advantage being independent of the matrices value.
*
*
* @see org.ejml.alg.dense.decomposition.lu.LUDecompositionAlt
*
* @author Peter Abeles
*/
public class DeterminantFromMinor {
// how wide the square matrix is
private int width;
// used to decide at which point it uses a direct algorithm to compute the determinant
private int minWidth;
// used to keep track of which submatrix it is computing the results for
private int []levelIndexes;
// the results at different levels of minor matrices
private double []levelResults;
// which columns where removed at what level
private int []levelRemoved;
// columns that are currently open
private int open[];
private int numOpen;
// a minor matrix which is created at the lowest level
private DenseMatrix64F tempMat;
private boolean dirty = false;
/**
*
* @param width The width of the matrices that it will be computing the determinant for
*/
public DeterminantFromMinor( int width )
{
this(width,5);
}
/**
*
* @param width The width of the matrices that it will be computing the determinant for
* @param minWidth At which point should it use a predefined function to compute the determinant.
*/
public DeterminantFromMinor( int width , int minWidth )
{
if( minWidth > 5 || minWidth < 2 ) {
throw new IllegalArgumentException("No direct function for that width");
}
if( width < minWidth )
minWidth = width;
this.minWidth = minWidth;
this.width = width;
int numLevels = width-(minWidth-2);
levelResults = new double[numLevels];
levelRemoved = new int[numLevels];
levelIndexes = new int[numLevels];
open = new int[ width ];
tempMat = new DenseMatrix64F(minWidth-1,minWidth-1);
}
/**
* Computes the determinant for the specified matrix. It must be square and have
* the same width and height as what was specified in the constructor.
*
* @param mat The matrix whose determinant is to be computed.
* @return The determinant.
*/
public double compute( RowD1Matrix64F mat ) {
if( width != mat.numCols || width != mat.numRows ) {
throw new RuntimeException("Unexpected matrix dimension");
}
// make sure everything is in the proper state before it starts
initStructures();
// System.arraycopy(mat.data,0,minorMatrix[0],0,mat.data.length);
int level = 0;
while( true ) {
int levelWidth = width-level;
int levelIndex = levelIndexes[level];
if( levelIndex == levelWidth ) {
if( level == 0 ) {
return levelResults[0];
}
int prevLevelIndex = levelIndexes[level-1]++;
double val = mat.get((level-1)*width+levelRemoved[level-1]);
if( prevLevelIndex % 2 == 0 ) {
levelResults[level-1] += val * levelResults[level];
} else {
levelResults[level-1] -= val * levelResults[level];
}
putIntoOpen(level-1);
levelResults[level] = 0;
levelIndexes[level] = 0;
level--;
} else {
int excluded = openRemove( levelIndex );
levelRemoved[level] = excluded;
if( levelWidth == minWidth ) {
createMinor(mat);
double subresult = mat.get(level*width+levelRemoved[level]);
subresult *= UnrolledDeterminantFromMinor.det(tempMat);
if( levelIndex % 2 == 0 ) {
levelResults[level] += subresult;
} else {
levelResults[level] -= subresult;
}
// put it back into the list
putIntoOpen(level);
levelIndexes[level]++;
} else {
level++;
}
}
}
}
private void initStructures() {
for( int i = 0; i < width; i++ ) {
open[i] = i;
}
numOpen = width;
if( dirty ) {
for( int i = 0; i < levelIndexes.length; i++ ) {
levelIndexes[i] = 0;
levelResults[i] = 0;
levelRemoved[i] = 0;
}
}
dirty = true;
}
private int openRemove( int where ) {
int val = open[where];
System.arraycopy(open,where+1,open,where,(numOpen-where-1));
numOpen--;
return val;
}
private void openAdd( int where, int val )
{
for( int i = numOpen; i > where; i-- ) {
open[i] = open[i-1];
}
numOpen++;
open[where] = val;
}
private void openAdd( int val ) {
open[numOpen++] = val;
}
private void putIntoOpen(int level) {
boolean added = false;
for( int i = 0; i < numOpen; i++ ) {
if( open[i] > levelRemoved[level]) {
added = true;
openAdd(i,levelRemoved[level]);
break;
}
}
if( !added ) {
openAdd(levelRemoved[level]);
}
}
private void createMinor( RowD1Matrix64F mat ) {
int w = minWidth-1;
int firstRow = (width-w)*width;
for( int i = 0; i < numOpen; i++ ) {
int col = open[i];
int srcIndex = firstRow + col;
int dstIndex = i;
for( int j = 0; j < w; j++ ) {
tempMat.set( dstIndex , mat.get( srcIndex ) );
dstIndex += w;
srcIndex += width;
}
}
}
}