All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.block.linsol.chol.BlockCholeskyOuterSolver Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.alg.block.linsol.chol;

import org.ejml.alg.block.BlockMatrixOps;
import org.ejml.alg.block.BlockTriangularSolver;
import org.ejml.alg.block.decomposition.chol.BlockCholeskyOuterForm;
import org.ejml.data.BlockMatrix64F;
import org.ejml.data.D1Submatrix64F;
import org.ejml.factory.LinearSolver;
import org.ejml.ops.SpecializedOps;


/**
 * 

Linear solver that uses a block cholesky decomposition.

* *

* Solver works by using the standard Cholesky solving strategy:
* A=L*LT
* A*x=b
* L*LT*x = b
* L*y = b
* LT*x = y
* x = L-Ty *

* *

* It is also possible to use the upper triangular cholesky decomposition. *

* * @author Peter Abeles */ public class BlockCholeskyOuterSolver implements LinearSolver { // cholesky decomposition private BlockCholeskyOuterForm chol = new BlockCholeskyOuterForm(true); // size of a block take from input matrix private int blockLength; // temporary data structure used in some calculation. private double temp[]; /** * Decomposes and overwrites the input matrix. * * @param A Semi-Positive Definite (SPD) system matrix. Modified. Reference saved. * @return If the matrix can be decomposed. Will always return false of not SPD. */ @Override public boolean setA(BlockMatrix64F A) { // Extract a lower triangular solution if( !chol.decompose(A) ) return false; blockLength = A.blockLength; return true; } @Override public double quality() { return SpecializedOps.qualityTriangular(false,chol.getT(null)); } /** * If X == null then the solution is written into B. Otherwise the solution is copied * from B into X. */ @Override public void solve(BlockMatrix64F B, BlockMatrix64F X) { if( B.blockLength != blockLength ) throw new IllegalArgumentException("Unexpected blocklength in B."); D1Submatrix64F L = new D1Submatrix64F(chol.getT(null)); if( X != null ) { if( X.blockLength != blockLength ) throw new IllegalArgumentException("Unexpected blocklength in X."); if( X.numRows != L.col1 ) throw new IllegalArgumentException("Not enough rows in X"); } if( B.numRows != L.col1 ) throw new IllegalArgumentException("Not enough rows in B"); // L * L^T*X = B // Solve for Y: L*Y = B BlockTriangularSolver.solve(blockLength,false,L,new D1Submatrix64F(B),false); // L^T * X = Y BlockTriangularSolver.solve(blockLength,false,L,new D1Submatrix64F(B),true); if( X != null ) { // copy the solution from B into X BlockMatrixOps.extractAligned(B,X); } } @Override public void invert(BlockMatrix64F A_inv) { BlockMatrix64F T = chol.getT(null); if( A_inv.numRows != T.numRows || A_inv.numCols != T.numCols ) throw new IllegalArgumentException("Unexpected number or rows and/or columns"); if( temp == null || temp.length < blockLength*blockLength ) temp = new double[ blockLength* blockLength ]; // zero the upper triangular portion of A_inv BlockMatrixOps.zeroTriangle(true,A_inv); D1Submatrix64F L = new D1Submatrix64F(T); D1Submatrix64F B = new D1Submatrix64F(A_inv); // invert L from cholesky decomposition and write the solution into the lower // triangular portion of A_inv // B = inv(L) BlockTriangularSolver.invert(blockLength,false,L,B,temp); // B = L^-T * B // todo could speed up by taking advantage of B being lower triangular // todo take advantage of symmetry BlockTriangularSolver.solveL(blockLength,L,B,true); } @Override public boolean modifiesA() { return chol.inputModified(); } @Override public boolean modifiesB() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy