All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.alg.dense.decomposition.hessenberg.TridiagonalDecompositionHouseholder Maven / Gradle / Ivy

Go to download

A fast and easy to use dense matrix linear algebra library written in Java.

There is a newer version: 0.25
Show newest version
/*
 * Copyright (c) 2009-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.alg.dense.decomposition.hessenberg;

import org.ejml.alg.dense.decomposition.qr.QrHelperFunctions;
import org.ejml.data.DenseMatrix64F;
import org.ejml.ops.CommonOps;

/**
 * 

* Performs a {@link TridiagonalSimilarDecomposition similar tridiagonal decomposition} on a square symmetric input matrix. * Householder vectors perform the similar operation and the symmetry is taken advantage * of for good performance. *

*

* Finds the decomposition of a matrix in the form of:
*
* A = O*T*OT
*
* where A is a symmetric m by m matrix, O is an orthogonal matrix, and T is a tridiagonal matrix. *

*

* This implementation is based off of the algorithm described in:
*
* David S. Watkins, "Fundamentals of Matrix Computations," Second Edition. Page 349-355 *

* * @author Peter Abeles */ public class TridiagonalDecompositionHouseholder implements TridiagonalSimilarDecomposition { /** * Only the upper right triangle is used. The Tridiagonal portion stores * the tridiagonal matrix. The rows store householder vectors. */ private DenseMatrix64F QT; // The size of the matrix private int N; // temporary storage private double w[]; // gammas for the householder operations private double gammas[]; // temporary storage private double b[]; public TridiagonalDecompositionHouseholder() { N = 1; w = new double[N]; b = new double[N]; gammas = new double[N]; } /** * Returns the internal matrix where the decomposed results are stored. * @return */ public DenseMatrix64F getQT() { return QT; } @Override public void getDiagonal(double[] diag, double[] off) { for( int i = 0; i < N; i++ ) { diag[i] = QT.data[i*N+i]; if( i+1 < N ) { off[i] = QT.data[i*N+i+1]; } } } /** * Extracts the tridiagonal matrix found in the decomposition. * * @param T If not null then the results will be stored here. Otherwise a new matrix will be created. * @return The extracted T matrix. */ @Override public DenseMatrix64F getT( DenseMatrix64F T ) { if( T == null ) { T = new DenseMatrix64F(N,N); } else if( N != T.numRows || N != T.numCols ) throw new IllegalArgumentException("The provided H must have the same dimensions as the decomposed matrix."); else T.zero(); T.data[0] = QT.data[0]; for( int i = 1; i < N; i++ ) { T.set(i,i, QT.get(i,i)); double a = QT.get(i-1,i); T.set(i-1,i,a); T.set(i,i-1,a); } if( N > 1 ) { T.data[(N-1)*N+N-1] = QT.data[(N-1)*N+N-1]; T.data[(N-1)*N+N-2] = QT.data[(N-2)*N+N-1]; } return T; } /** * An orthogonal matrix that has the following property: T = QTAQ * * @param Q If not null then the results will be stored here. Otherwise a new matrix will be created. * @return The extracted Q matrix. */ @Override public DenseMatrix64F getQ( DenseMatrix64F Q , boolean transposed ) { if( Q == null ) { Q = CommonOps.identity(N); } else if( N != Q.numRows || N != Q.numCols ) throw new IllegalArgumentException("The provided H must have the same dimensions as the decomposed matrix."); else CommonOps.setIdentity(Q); for( int i = 0; i < N; i++ ) w[i] = 0; if( transposed ) { for( int j = N-2; j >= 0; j-- ) { w[j+1] = 1; for( int i = j+2; i < N; i++ ) { w[i] = QT.data[j*N+i]; } QrHelperFunctions.rank1UpdateMultL(Q,w,gammas[j+1],j+1,j+1,N); } } else { for( int j = N-2; j >= 0; j-- ) { w[j+1] = 1; for( int i = j+2; i < N; i++ ) { w[i] = QT.get(j,i); } QrHelperFunctions.rank1UpdateMultR(Q,w,gammas[j+1],j+1,j+1,N,b); } } return Q; } /** * Decomposes the provided symmetric matrix. * * @param A Symmetric matrix that is going to be decomposed. Not modified. */ @Override public boolean decompose( DenseMatrix64F A ) { init(A); for( int k = 1; k < N; k++ ) { similarTransform(k); } return true; } /** * Computes and performs the similar a transform for submatrix k. */ private void similarTransform( int k) { double t[] = QT.data; // find the largest value in this column // this is used to normalize the column and mitigate overflow/underflow double max = 0; int rowU = (k-1)*N; for( int i = k; i < N; i++ ) { double val = Math.abs(t[rowU+i]); if( val > max ) max = val; } if( max > 0 ) { // -------- set up the reflector Q_k double tau = QrHelperFunctions.computeTauAndDivide(k,N,t,rowU,max); // write the reflector into the lower left column of the matrix double nu = t[rowU+k] + tau; QrHelperFunctions.divideElements(k+1,N,t,rowU,nu); t[rowU+k] = 1.0; double gamma = nu/tau; gammas[k] = gamma; // ---------- Specialized householder that takes advantage of the symmetry householderSymmetric(k,gamma); // since the first element in the householder vector is known to be 1 // store the full upper hessenberg t[rowU+k] = -tau*max; } else { gammas[k] = 0; } } /** * Performs the householder operations on left and right and side of the matrix. QTAQ * @param row Specifies the submatrix. * * @param gamma The gamma for the householder operation */ public void householderSymmetric( int row , double gamma ) { int startU = (row-1)*N; // compute v = -gamma*A*u for( int i = row; i < N; i++ ) { double total = 0; // the lower triangle is not written to so it needs to traverse upwards // to get the information. Reduces the number of matrix writes need // improving large matrix performance for( int j = row; j < i; j++ ) { total += QT.data[j*N+i]*QT.data[startU+j]; } for( int j = i; j < N; j++ ) { total += QT.data[i*N+j]*QT.data[startU+j]; } w[i] = -gamma*total; } // alpha = -0.5*gamma*u^T*v double alpha = 0; for( int i = row; i < N; i++ ) { alpha += QT.data[startU+i]*w[i]; } alpha *= -0.5*gamma; // w = v + alpha*u for( int i = row; i < N; i++ ) { w[i] += alpha*QT.data[startU+i]; } // A = A + w*u^T + u*w^T for( int i = row; i < N; i++ ) { double ww = w[i]; double uu = QT.data[startU+i]; int rowA = i*N; for( int j = i; j < N; j++ ) { // only write to the upper portion of the matrix // this reduces the number of cache misses QT.data[rowA+j] += ww*QT.data[startU+j] + w[j]*uu; } } } /** * If needed declares and sets up internal data structures. * * @param A Matrix being decomposed. */ public void init( DenseMatrix64F A ) { if( A.numRows != A.numCols) throw new IllegalArgumentException("Must be square"); if( A.numCols != N ) { N = A.numCols; if( w.length < N ) { w = new double[ N ]; gammas = new double[N]; b = new double[N]; } } QT = A; } @Override public boolean inputModified() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy