jaitools.media.jai.kernelstats.KernelStatsOpImage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jt-all Show documentation
Show all versions of jt-all Show documentation
Provides a single jar containing all JAI-tools modules which you can
use instead of including individual modules in your project. Note:
It does not include the Jiffle scripting language or Jiffle image
operator.
The newest version!
/*
* Copyright 2009 Michael Bedward
*
* This file is part of jai-tools.
*
* jai-tools is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* jai-tools is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with jai-tools. If not, see .
*
*/
package jaitools.media.jai.kernelstats;
import jaitools.numeric.SampleStats;
import jaitools.numeric.Statistic;
import java.awt.Rectangle;
import java.awt.image.DataBuffer;
import java.awt.image.Raster;
import java.awt.image.RenderedImage;
import java.awt.image.WritableRaster;
import java.util.Map;
import javax.media.jai.AreaOpImage;
import javax.media.jai.BorderExtender;
import javax.media.jai.ImageLayout;
import javax.media.jai.KernelJAI;
import javax.media.jai.ROI;
import javax.media.jai.RasterAccessor;
import javax.media.jai.RasterFormatTag;
/**
* An operator to calculate neighbourhood statistics on a source image.
*
* @see KernelStatsDescriptor Description of the algorithm and example
*
* @author Michael Bedward
* @since 1.0
* @version $Id: KernelStatsOpImage.java 1383 2011-02-10 11:22:29Z michael.bedward $
*/
public class KernelStatsOpImage extends AreaOpImage {
private int[] srcBandOffsets;
private int srcPixelStride;
private int srcScanlineStride;
/* Destination image variables */
private int destWidth;
private int destHeight;
private int destBands;
private int[] destBandOffsets;
private int destPixelStride;
private int destScanlineStride;
private int srcBand;
/* Kernel variables. */
private boolean[] inKernel;
private int kernelN;
private int kernelW;
private int kernelH;
private int kernelKeyX;
private int kernelKeyY;
/* Mask variables */
private ROI roi;
private boolean maskSrc;
private boolean maskDest;
private Statistic[] stats;
private Double[] sampleData;
private Calculator functionTable;
private Number nilValue;
/**
* Constructor
* @param source a RenderedImage.
* @param extender a BorderExtender, or null.
* @param config configurable attributes of the image (see {@link AreaOpImage})
* @param layout an optional ImageLayout object; if the layout specifies a SampleModel
* and / or ColorModel that are not valid for the requested statistics (e.g. wrong number
* of bands) these will be overridden.
* @param band the source image band to process
* @param kernel the convolution kernel
* @param stats an array of Statistic constants naming the statistics required
* @throws IllegalArgumentException if the roi's bounds do not contain the entire
* source image
* @see KernelStatsDescriptor
* @see Statistic
*/
public KernelStatsOpImage(RenderedImage source,
BorderExtender extender,
Map config,
ImageLayout layout,
Statistic[] stats,
KernelJAI kernel,
int band,
ROI roi,
boolean maskSrc,
boolean maskDest,
boolean ignoreNaN,
Number nilValue) {
super(source,
layout,
config,
true,
extender,
kernel.getLeftPadding(),
kernel.getRightPadding(),
kernel.getTopPadding(),
kernel.getBottomPadding());
this.srcBand = band;
kernelW = kernel.getWidth();
kernelH = kernel.getHeight();
kernelKeyX = kernel.getXOrigin();
kernelKeyY = kernel.getYOrigin();
/*
* Convert the kernel data to boolean values such
* that all non-zero values -> true; all zero
* values -> false
*/
final float FTOL = 1.0e-8f;
inKernel = new boolean[kernelW * kernelH];
float[] data = kernel.getKernelData();
kernelN = 0;
for (int i = 0; i < inKernel.length; i++) {
if (Math.abs(data[i]) > FTOL) {
inKernel[i] = true;
kernelN++ ;
} else {
inKernel[i] = false;
}
}
this.stats = stats;
this.roi = roi;
if (roi == null) {
this.maskSrc = this.maskDest = false;
} else {
// check that the ROI contains the source image bounds
Rectangle sourceBounds = new Rectangle(
source.getMinX(), source.getMinY(), source.getWidth(), source.getHeight());
if (!roi.getBounds().contains(sourceBounds)) {
throw new IllegalArgumentException("The bounds of the ROI must contain the source image");
}
this.maskSrc = maskSrc;
this.maskDest = maskDest;
}
this.functionTable = new Calculator(ignoreNaN);
this.nilValue = nilValue;
this.sampleData = new Double[kernelN];
}
/**
* Calculates neighbourhood statistics for a specified rectangle
*
* @param sources source rasters (only sources[0] is used here)
* @param dest a WritableRaster tile containing the area to be computed.
* @param destRect the rectangle within dest to be processed.
*/
@Override
protected void computeRect(Raster[] sources,
WritableRaster dest,
Rectangle destRect) {
RasterFormatTag[] formatTags = getFormatTags();
Raster source = sources[0];
Rectangle srcRect = mapDestRect(destRect, 0);
RasterAccessor srcAcc =
new RasterAccessor(source, srcRect,
formatTags[0], getSourceImage(0).getColorModel());
RasterAccessor destAcc =
new RasterAccessor(dest, destRect,
formatTags[1], getColorModel());
destWidth = destAcc.getWidth();
destHeight = destAcc.getHeight();
destBands = destAcc.getNumBands();
destBandOffsets = destAcc.getBandOffsets();
destPixelStride = destAcc.getPixelStride();
destScanlineStride = destAcc.getScanlineStride();
srcBandOffsets = srcAcc.getBandOffsets();
srcPixelStride = srcAcc.getPixelStride();
srcScanlineStride = srcAcc.getScanlineStride();
switch (destAcc.getDataType()) {
case DataBuffer.TYPE_BYTE:
calcByteData(srcAcc, destAcc);
break;
case DataBuffer.TYPE_SHORT:
calcShortData(srcAcc, destAcc);
break;
case DataBuffer.TYPE_USHORT:
calcUShortData(srcAcc, destAcc);
break;
case DataBuffer.TYPE_INT:
calcIntData(srcAcc, destAcc);
break;
case DataBuffer.TYPE_FLOAT:
calcFloatData(srcAcc, destAcc);
break;
case DataBuffer.TYPE_DOUBLE:
calcDoubleData(srcAcc, destAcc);
break;
}
if (destAcc.isDataCopy()) {
destAcc.clampDataArrays();
destAcc.copyDataToRaster();
}
}
private void calcByteData(RasterAccessor srcAcc, RasterAccessor destAcc) {
byte srcData[][] = srcAcc.getByteDataArrays();
byte destData[][] = destAcc.getByteDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
byte srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = (double) (srcBandData[imageOffset] & 0xff);
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
byte destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
int val = nilValue.byteValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = (int) (statValue + 0.5);
if (val < 0) {
val = 0;
} else if (val > 255) {
val = 255;
}
}
}
destBandData[dstPixelOffset] = (byte) val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
private void calcShortData(RasterAccessor srcAcc, RasterAccessor destAcc) {
short destData[][] = destAcc.getShortDataArrays();
short srcData[][] = srcAcc.getShortDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
short srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = (double) srcBandData[imageOffset];
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
short destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
int val = nilValue.shortValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = (int) (statValue + 0.5);
if (val < Short.MIN_VALUE) {
val = Short.MIN_VALUE;
} else if (val > Short.MAX_VALUE) {
val = Short.MAX_VALUE;
}
}
}
destBandData[dstPixelOffset] = (short) val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
private void calcUShortData(RasterAccessor srcAcc, RasterAccessor destAcc) {
short destData[][] = destAcc.getShortDataArrays();
short srcData[][] = srcAcc.getShortDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
short srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = (double) (srcBandData[imageOffset] & 0xffff);
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
short destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
int val = nilValue.shortValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = (int) (statValue + 0.5);
if (val < 0) {
val = 0;
} else if (val > 0xffff) {
val = 0xffff;
}
}
}
destBandData[dstPixelOffset] = (short) val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
private void calcIntData(RasterAccessor srcAcc, RasterAccessor destAcc) {
int destData[][] = destAcc.getIntDataArrays();
int srcData[][] = srcAcc.getIntDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
int srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = (double) srcBandData[imageOffset];
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
int destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
int val = nilValue.intValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = (int) (statValue + 0.5);
}
}
destBandData[dstPixelOffset] = val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
private void calcFloatData(RasterAccessor srcAcc, RasterAccessor destAcc) {
float destData[][] = destAcc.getFloatDataArrays();
float srcData[][] = srcAcc.getFloatDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
float srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = (double) srcBandData[imageOffset];
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
float destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
float val = nilValue.floatValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = (float) statValue;
}
}
destBandData[dstPixelOffset] = val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
private void calcDoubleData(RasterAccessor srcAcc, RasterAccessor destAcc) {
double destData[][] = destAcc.getDoubleDataArrays();
double srcData[][] = srcAcc.getDoubleDataArrays();
int destY = destAcc.getY();
int destX = destAcc.getX();
double srcBandData[] = srcData[srcBand];
int srcScanlineOffset = srcBandOffsets[srcBand];
int destLineDelta = 0;
for (int j = 0; j < destHeight; j++, destY++) {
int srcPixelOffset = srcScanlineOffset;
int destPixelDelta = 0;
for (int i = 0; i < destWidth; i++, destX++) {
int numSamples = 0;
if (!maskDest || roi.contains(destX, destY)) {
int srcY = destY - kernelKeyY;
int kernelVerticalOffset = 0;
int imageVerticalOffset = srcPixelOffset;
for (int u = 0; u < kernelH; u++, srcY++) {
int srcX = destX - kernelKeyX;
int imageOffset = imageVerticalOffset;
for (int v = 0; v < kernelW; v++, srcX++) {
if (!maskSrc || roi.contains(srcX, srcY)) {
if (inKernel[kernelVerticalOffset + v]) {
sampleData[numSamples++] = srcBandData[imageOffset];
}
}
imageOffset += srcPixelStride;
}
kernelVerticalOffset += kernelW;
imageVerticalOffset += srcScanlineStride;
}
}
for (int band = 0; band < destBands; band++) {
double destBandData[] = destData[band];
int dstPixelOffset = destBandOffsets[band] + destPixelDelta + destLineDelta;
double val = nilValue.doubleValue();
if (numSamples > 0) {
double statValue = functionTable.call(stats[band], sampleData, numSamples);
if (!Double.isNaN(statValue)) {
val = statValue;
}
}
destBandData[dstPixelOffset] = val;
}
srcPixelOffset += srcPixelStride;
destPixelDelta += destPixelStride;
}
srcScanlineOffset += srcScanlineStride;
destLineDelta += destScanlineStride;
}
}
/**
* This class handles preparation of sample data, passing calculation tasks
* to {@linkplain jaitools.utils.SampleStats} methods, and returning results
*/
private static class Calculator {
private boolean ignoreNaN;
/**
* Constructor
* @param ignoreNaN specifies how to respond to NaN values
*/
Calculator(boolean ignoreNaN) {
this.ignoreNaN = ignoreNaN;
}
/**
* Calculate the specified statistic on sample data
* @param stat the {@linkplain Statistic} constant for the desired statistic
* @param data the sample data
* @param n number of elements to use from the sample data array
* @return value of the statistic as a double (may be NaN)
*/
public double call(Statistic stat, Double[] data, int n) {
Double[] values = null;
if (data.length == n) {
values = data;
} else {
values = new Double[n];
System.arraycopy(data, 0, values, 0, n);
}
switch (stat) {
case MAX:
return SampleStats.max(values, ignoreNaN);
case MEAN:
return SampleStats.mean(values, ignoreNaN);
case MEDIAN:
return SampleStats.median(values, ignoreNaN);
case MIN:
return SampleStats.min(values, ignoreNaN);
case RANGE:
return SampleStats.range(values, ignoreNaN);
case SDEV:
return SampleStats.sdev(values, ignoreNaN);
case VARIANCE:
return SampleStats.variance(values, ignoreNaN);
case SUM:
return SampleStats.sum(values, ignoreNaN);
default:
throw new IllegalArgumentException("Unrecognized KernelStatstic arg");
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy