jaitools.numeric.MeanVarianceProcessor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jt-all Show documentation
Show all versions of jt-all Show documentation
Provides a single jar containing all JAI-tools modules which you can
use instead of including individual modules in your project. Note:
It does not include the Jiffle scripting language or Jiffle image
operator.
The newest version!
/*
* Copyright 2009-2010 Michael Bedward
*
* This file is part of jai-tools.
*
* jai-tools is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* jai-tools is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with jai-tools. If not, see .
*
*/
package jaitools.numeric;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
/**
* A Processor to calculate running mean and variance. The algorithm used is
* that of Welford (1962) which was presented by Knuth:
*
* Donald E. Knuth (1998). The Art of Computer Programming, volume 2: Seminumerical Algorithms, 3rd edn., p. 232.
*
* The algorithm is described online at:
*
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm
*
*
* @see Statistic
* @see StreamingSampleStats
*
* @author Michael Bedward
* @since 1.0
* @version $Id: MeanVarianceProcessor.java 1383 2011-02-10 11:22:29Z michael.bedward $
*/
public class MeanVarianceProcessor extends AbstractProcessor {
private static final Set SUPPORTED = new HashSet();
static {
SUPPORTED.add(Statistic.MEAN);
SUPPORTED.add(Statistic.SDEV);
SUPPORTED.add(Statistic.VARIANCE);
};
private double mOld;
private double mNew;
private double s;
/**
* {@inheritDoc}
*/
public Collection getSupported() {
return Collections.unmodifiableCollection(SUPPORTED);
}
/**
* {@inheritDoc}
*/
@Override
protected boolean update(Double sample) {
if (isAccepted(sample)) {
if (getNumAccepted() == 0) { // first value
mOld = mNew = sample;
s = 0.0;
} else {
mNew = mOld + (sample - mOld) / (getNumAccepted() + 1);
s = s + (sample - mOld) * (sample - mNew);
mOld = mNew;
}
return true;
}
return false;
}
/**
* {@inheritDoc}
*/
public Double get(Statistic stat) {
if (getNumAccepted() == 0) {
return Double.NaN;
}
final long n = getNumAccepted();
switch (stat) {
case MEAN:
if (n > 0) {
return mNew;
}
break;
case SDEV:
if (n > 1) {
return Math.sqrt(s / (n - 1));
}
break;
case VARIANCE:
if (n > 1) {
return s / (n - 1);
}
break;
default:
throw new IllegalArgumentException(stat + " not supported by " + getClass().getName());
}
return Double.NaN;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy