All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jaitools.numeric.MeanVarianceProcessor Maven / Gradle / Ivy

Go to download

Provides a single jar containing all JAI-tools modules which you can use instead of including individual modules in your project. Note: It does not include the Jiffle scripting language or Jiffle image operator.

The newest version!
/*
 * Copyright 2009-2010 Michael Bedward
 *
 * This file is part of jai-tools.
 *
 * jai-tools is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * jai-tools is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with jai-tools.  If not, see .
 *
 */

package jaitools.numeric;

import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;

/**
 * A Processor to calculate running mean and variance. The algorithm used is
 * that of Welford (1962) which was presented by Knuth:
 * 
* Donald E. Knuth (1998). The Art of Computer Programming, volume 2: Seminumerical Algorithms, 3rd edn., p. 232. *
* The algorithm is described online at: *
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm *
* * @see Statistic * @see StreamingSampleStats * * @author Michael Bedward * @since 1.0 * @version $Id: MeanVarianceProcessor.java 1383 2011-02-10 11:22:29Z michael.bedward $ */ public class MeanVarianceProcessor extends AbstractProcessor { private static final Set SUPPORTED = new HashSet(); static { SUPPORTED.add(Statistic.MEAN); SUPPORTED.add(Statistic.SDEV); SUPPORTED.add(Statistic.VARIANCE); }; private double mOld; private double mNew; private double s; /** * {@inheritDoc} */ public Collection getSupported() { return Collections.unmodifiableCollection(SUPPORTED); } /** * {@inheritDoc} */ @Override protected boolean update(Double sample) { if (isAccepted(sample)) { if (getNumAccepted() == 0) { // first value mOld = mNew = sample; s = 0.0; } else { mNew = mOld + (sample - mOld) / (getNumAccepted() + 1); s = s + (sample - mOld) * (sample - mNew); mOld = mNew; } return true; } return false; } /** * {@inheritDoc} */ public Double get(Statistic stat) { if (getNumAccepted() == 0) { return Double.NaN; } final long n = getNumAccepted(); switch (stat) { case MEAN: if (n > 0) { return mNew; } break; case SDEV: if (n > 1) { return Math.sqrt(s / (n - 1)); } break; case VARIANCE: if (n > 1) { return s / (n - 1); } break; default: throw new IllegalArgumentException(stat + " not supported by " + getClass().getName()); } return Double.NaN; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy