All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jasima.core.statistics.SummaryStat Maven / Gradle / Ivy

Go to download

JAva SImulatior for MAnufacturing and logistics - A framework for discrete event simulation and computer experiments with a main focus on modelling and analyzing logistic/manufacturing systems.

There is a newer version: 1.3.0
Show newest version
/*******************************************************************************
 * Copyright (c) 2010-2013 Torsten Hildebrandt and jasima contributors
 *
 * This file is part of jasima, v1.0.
 *
 * jasima is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * jasima is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with jasima.  If not, see .
 *
 * $Id: SummaryStat.java 74 2013-01-08 17:31:49Z [email protected] $
 *******************************************************************************/
package jasima.core.statistics;

import java.io.Serializable;

import org.apache.commons.math3.distribution.TDistribution;

/**
 * Class to collect the most important statistics without having to store all
 * values encountered. It can return mean, standard deviation, variance, min,
 * max etc. in O(1) time. Values are passed by calling the
 * {@link #value(double)} method. Values can be weighted, just call
 * {@link #value(double, double)} instead.
 * 

* In other simulation packages this is sometimes called "tally". * * @author Torsten Hildebrandt * @version "$Id: SummaryStat.java 73 2013-01-08 17:16:19Z [email protected]$" */ public class SummaryStat implements Serializable { private static final long serialVersionUID = 2887454928117526659L; private static final double MIN_WEIGHT = 1e-12d; protected static final double DEF_ERROR_PROB = 0.05; private String name; private double valSum, sumSquare, weightSum; private int numObs; private double max; private double min; protected double lastValue, lastWeight; public SummaryStat() { this((String) null); } /** * Create a new SummaryStat-object initialized with the values of "vs". */ public SummaryStat(SummaryStat vs) { this(vs.name); valSum = vs.valSum; sumSquare = vs.sumSquare; weightSum = vs.weightSum; lastValue = vs.lastValue; lastWeight = vs.lastWeight; numObs = vs.numObs; max = vs.max; min = vs.min; } public SummaryStat(String name) { super(); clear(); setName(name); } public void value(double v) { value(v, 1.0d); } public void value(double v, double weight) { if (weight < 0.0d) throw new IllegalArgumentException("Weight can't be negative. " + weight); if (weight < MIN_WEIGHT) return; lastValue = v; lastWeight = weight; numObs++; if (v < min) min = v; if (v > max) max = v; weightSum += weight; final double vw = v * weight; valSum += vw; sumSquare += v * vw; } public double mean() { if (numObs < 1) return Double.NaN; return valSum / weightSum; } public double stdDev() { return Math.sqrt(variance()); } public double variance() { if (numObs < 2) return Double.NaN; return (weightSum * sumSquare - valSum * valSum) / (weightSum * (weightSum - 1)); } /** Returns the coefficient of variation. */ public double varCoeff() { return stdDev() / mean(); } public double sum() { if (numObs < 1) return Double.NaN; return valSum; } public int numObs() { return numObs; } public double min() { if (numObs < 1) return Double.NaN; return min; } public double max() { if (numObs < 1) return Double.NaN; return max; } /** * Combines the data in "other" with another ValueStat-Object. The combined * object behaves as if it had also seen the data of "other". */ public void combine(SummaryStat other) { valSum += other.valSum; sumSquare += other.sumSquare; weightSum += other.weightSum; numObs += other.numObs; if (other.max > max) max = other.max; if (other.min < min) min = other.min; } /** * @return lower value of a confidence interval with a 0.95-confidence level */ public double confidenceIntervalLower() { return confidenceIntervalLower(DEF_ERROR_PROB); } public double confidenceIntervalUpper() { return confidenceIntervalUpper(DEF_ERROR_PROB); } public double confidenceIntervalLower(double errorProb) { return mean() - confIntRangeSingle(errorProb); } public double confidenceIntervalUpper(double errorProb) { return mean() + confIntRangeSingle(errorProb); } public double confIntRangeSingle(double errorProb) { if (numObs <= 2) return Double.NaN; double deg = weightSum() - 1.0d; TDistribution dist = new TDistribution(deg); return Math.abs(dist.inverseCumulativeProbability(errorProb * 0.5d)) * Math.sqrt(variance() / weightSum()); } public double weightSum() { return weightSum; } public double lastValue() { if (numObs == 0) return Double.NaN; return lastValue; } public double lastWeight() { if (numObs == 0) return Double.NaN; return lastWeight; } public void clear() { valSum = sumSquare = 0.0d; numObs = 0; weightSum = 0.0d; min = Double.POSITIVE_INFINITY; max = Double.NEGATIVE_INFINITY; } public void setName(String name) { this.name = name; } public String getName() { return name; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy